MACROECONOMIC MODEL DOCUMENTATION

MARCH 2008 PUBLIC MODEL

HM TREASURY

I HORSE GUARDS ROAD
LONDON SWIA 2HQ

TABLE OF CONTENTS

Introduction 3
Overview of Treasury Model 4
Winsolve Model Code 5
Variable Descriptions and Sources 50
Group 01: Consumption 68
Group 02: Inventories 72
Group 03: Investment 75
Group 04: The Labour Market 82
Group 05: Exports of Goods \& Services 88
Group 06: Imports of Goods \& Services 92
Group 07: Prices, Costs \& Earnings 95
Group 08: The North Sea 110
Group 09: Public Sector Expenditure 113
Group I0: Public Sector Receipts 131
Group II: Balance of Payments 159
Group I2: Public Corporations \& Public Sector Aggregates 171
Group 14: Domestic Financial Sector 182
Group I5: Income Account 192
Group 16: Gross Domestic Product Identities 203
Group 20: Public Sector Borrowing, Debt \& Funding. 211
Annex: Alphabetical Listing of Model Variables 221

The HM Treasury Macroeconomic model is principally a model of the economic activity described and recorded in the National Accounts The relationships between variables are modelled by around 40 estimated equations i.e. econometric relationships and a further 320 technical relationships and accounting identities. Some variables are determined outside of the model framework and their values are taken as given i.e. exogenous. A summary is set out in the model overview. Although it is a mathematical model it should not be used in a rigid and mechanical way, like all macroeconomic models it requires a great deal of judgement to be applied to produce a considered and plausible result.

In 2005 the Treasury completed the migration of the HM Treasury Macroeconomic model from the in-house solution software (Amodel) to the program Winsolve. Winsolve is a program for solving and simulating non-linear models, more information about Winsolve can be found at http://www.econ.surrey.ac.uk/winsolve/. The Public Model will now be released in Winsolve, and is no longer available in Amodel.

Under Winsolve model variables are identified by their names, whereas under Amodel a unique variable number identified variables. In managing the transition from Amodel to Winsolve it has been helpful to note the existing variable number, and also assign notional variable numbers to new variables added under Winsolve. Hence in this documentation variables are still presented in numerical order and not the order in which they are presented in the model code. The complete Winsolve model code is included in this documentation, and where a discrepancy arises between the model code and variable documentation e.g. the equation for a variable or its source then the model code should be taken as the definitive source.

This document gives a detailed description of the variables and equations in the Treasury Model. Variables are organised into groups as listed in the table on page four. At the beginning of each group there is a factual outline of the major variables, and any other relevant general guidance. The documentation for each variable sets out the variable name and number, and describes the data, their source, and the unit of measurement. Office for National Statistics (ONS) identifiers have been given wherever possible. All the data used in the Treasury Model are seasonally adjusted unless otherwise stated. Most variables are calendar year seasonally adjusted, except in the case of the public sector where for the most part, variables are financial year seasonally adjusted. Further information on data published by the ONS including identifiers can be found at http://www.statistics.gov.uk/statbase/expodata/TZfiles/etas.txt.

Various non-standard notational conventions are used throughout the documentation. The notation g^{\prime} refers to the lag operator for the ith period e.g. $g^{2} X$ denotes X_{t-2} and $(I-g)$ is the first difference operator. The operator y converts an annual interest rate into a quarterly rate. Dummy variables Qi assume the value I in quarter i and zero otherwise. Each estimated equation is presented with t-stats appearing in parentheses beneath the estimated coefficients, and any diagnostic statistics. Where the t-stat is absent the coefficient has been imposed. Reasons for this are usually given in the 'comment'. For each behavioural equation a summary of equation properties is normally given, including static long-run elasticities and shorter term dynamic responses to changes in some of the explanatory variables. A 'comment' is also presented when the salient features of the equation or data warrant elaboration.

Macroeconomic Prospects Team
Nicholas.Vaughan@hm-treasury.gov.uk

Table I: Overview of Treasury Model

Treasury Model Group		Model Relationships				Total
		Behavioural	Technical	Exogenous	Identity	
I	Consumption	3	0	I	2	6
2	Inventories	1	2	1	4	8
3	Investment	2	5	9	7	23
4	Labour market	2	3	5	4	14
5	Exports of Goods \& Services	2	1	4	4	11
6	Imports of Goods \& Services	1	0	3	4	8
7	Prices, Costs \& Wages	8	20	5	I	34
8	North Sea	1	5	2	0	8
9	Public Sector Expenditure	0	37	36	4	77
10	Public Sector Receipts	5	51	38	10	104
11	Balance of Payments (RoW)	3	20	13	7	43
12	Public Sector Totals	0	13	20	23	56
14	Domestic Financial Sector	9	4	2	1	16
15	Income Account	2	20	2	11	35
16	GDP Identities	1	8	1	23	33
20	PSBR, Debt \& Funding	0	10	16	16	42
Total number of variables		40	199	158	121	518

Winsolve Model Code

It should be noted that in this model for complete transparency all exogenous variables have been specified via an equation, this means that under Winsolve, formally, they are endogenous. However, since they are all univariate equations then in practice their solution values are independent of the wider model. Hence any univariate equation should be taken as representing an exogenous variable, and if the equation does not supply an appropriate solution then care should be taken to supply alternative values and fix them throughout the solution period.

```
@ WinSolve code for HMT Public Macroeconomic Model 2008
{
    http://www.timberlake.co.uk/software/winsolve/winsolve.html
    Authors: Rod Whittaker, Nick Vaughan & Richard Al-Saffar
This model is provided by HM Treasury to the public for use based on their own
assumptions. As such, results produced by this model do not constitute the views
of the Treasury nor are they to be regarded as Treasury forecasts.
The model is provided 'as is', without any representation or endorsement made
and without warranty of any kind. We do not warrant that the functions contained
in the model, or the data supplied with it will be error free, and in no event
will we be liable for any loss or damage whatsoever arising from its use.
```

NB Changes to this file will not be reflected in the model file PUBMOD08. SMF.

SOURCE codes for tables:
BB Blue Book
PB Pink Book
EA Economic Accounts
FS Financial Statistics
ET Economic Trends
MD Monthly Digest of Statistics
AA Annual Abstract of Statistics
QA Quart. Natl Accounts lst release
LM Labour Market Stats 1st release
BP Balance of Payments 1st release
TD UK Trade 1st release
PF Public Sector Finances lst release
CS Capital Stocks

```
UPDATE format: initials of official plus MMYY date, ????: no update of equation
}
```

```
{======== Model setup
{
*W Denotes a Working variable
*P Denotes a model Parameter
*M Denotes Multiplicative adjustments
*A Denotes Additive adjustments
*I Denotes an identity equation
}
*W Q1 = seas(1) ; { 1,0 seasonal dummies }
*W Q2 = seas(2) ;
```

```
*W Q3 = seas(3) ;
*W Q4 = seas(4) ;
*P OILBASE = 17.41 ;
{========= Group 01: Consumption
*C HH (&NPISH) final consumption expenditure NPSP T2.5,ET DG0304
*W RLY = 100*(FYEMP + MI - EMPSC - EESC + SBHH - TYWHH + CGOTR
    + EECOMPC - EECOMPD - GNP4)/PCE ; {real labour income}
dlog(C) = - 0.12916*log(C(-1)/RLY(-1)) - 0.10513*dlog(C(-1))
    + 0.005062*log(100*NFWPE (-1) /(PCE (-1)*RLY (-1)))
    + 0.194530*dlog(RHHDI) + 0.089182*dlog(RHHDI(-1))
    - 0.138360*dlog(RHHDI(-2)) + 0.14614*(dlog(GPW) -dlog(PCE))
    - 0.008354*diff(UNUKP) - 0.000732*diff(RS) + 0.019706 {0.013403}
    + 0.000335*time(198501)*ifle(199002)
    - 0.000107*time(198501)*ifge(199003)
    - 0.21904*(((100*LHP (-1)*((1+RHF (-1)/100)^.25 - 1)/PCE (-1))/RHHDI (-1))
        - ((100*LHP(-2)*((1+RHF (-2)/100)^.25 - 1)/PCE (-2))/RHHDI (-2)))
    + 0.039784*(ifeq(197902)-ifeq(197903));
*C HH (&NPISH) final consumption expenditure RPQM T2.5,ET NV0206
C£ = C*PCE/100 ;
*C HH final consumption expenditure: durable goods UTID TA7,EA NV????
*M CDUR = C* ( 0.618320*(CDUR(-1)/C(-1)) + 0.015483*log(RHHDI (-1))
    + 0.008932*log(PD(-1)) + 0.049124*log(RHHDI/RHHDI(-2)) - 0.193
    + 0.007*(ifeq(197301)-ifeq(197302))
    + 0.004*(ifeq(197803)-ifeq(197804))
    + 0.016*(ifeq(197902)-ifeq(197903)) ) ;
\begin{tabular}{|c|c|c|}
\hline *C HH final consumption expenditure: durable goods & UTIB TA7, EA & NV1106 \\
\hline ratio(CDUR£) = ratio (C£) ; & & \\
\hline * C Numbers in age cohort 20-29 & KABB T5.3, AA & NV0906 \\
\hline A2029 = A2029(-1) ; & & \\
\hline *C Property transactions & FTAQ T5.5,ET & NV?? ? ? \\
\hline * M dlog \((P D)=-0.285 * \log (\mathrm{PD}(-1))+0.264 * \log (\operatorname{RHHDI}(-1))\) & & \\
\hline - 0.276* \(\log (\operatorname{APH}(-1) / \mathrm{PCE}(-1))-0.0108 *(\mathrm{RS}(-1)\) & - RMORT (-1)) & \\
\hline - 0.00237* (RMORT (-1) - 400*dlog (APH (-1))) & & \\
\hline + 0.665* \(\log (\mathrm{A} 2029(-1))-7.408999\); & & \\
\hline
\end{tabular}
```

```
{========= Group 02: Inventories ===================================================== }
*W ZONE = 0.4*ifeq(197404) + 0.8*ifge(197501)*ifle(198101)
    + 1.0*ifge(198102)*ifle(198401) ;
*W ZTWO = 0.4*ifeq(197404) + 0.8*ifge(197501)*ifle(198001)
    + 0.7*ifge(198002)*ifle(198003)
    + 0.9*ifge(198004)*ifle(198101) ;
CS = PINV*TFE/TFE£*((TCPRO*(1 - ZONE)*(PINV/PINV(-4) - 1))/(1 - TCPRO)
    + (1 - PINV/PINV (-4) + (RS + 2)/100*(1 - TCPRO))
    *(1 + TCPRO*(1 - ZTWO)/(1 - TCPRO)));
*C Inventory levels HMT TA9,EA NV0206
dlog(INV) = 0.001057 - 0.13108*log(INV(-1)/GVA(-1)) - 0.000363*(CS (-2))
    + 0.41207*dlog(INV (-1)) + 0.24573*dlog(GVA)
    - 0.000435*max((time(197001) - 40.0), 0) ;
*C Change in inventories
CAFU TA2,EA NV0206
DINV = diff(INV) ;
*C Book Value of inventories
HMT TA9,EA
NV0206
BV = INV*PINV/100 ;
*C Stock appreciation
                                    DLRA+EQCB TC,BB
                                    NV0206
SA = BV(-1)*(PINV/PINV (-1)-1) ;
*C Change in inventories CAEX TA2,EA NV0206
DINV£ = DINV*PINV/100 ;
*C Change in inventories of HH and NPISH RPZX TA41,EA NV0206
DINVHH = 0.15*DINV£ ;
*C Change in inventories of HH and NPISH
ANMY PSAT2,PF
NV0707
DINVCG = DINVCG(-1) ;
{========= Group 03: Investment ======================================================= }
```

*C Rate of first year allowances for plant \& machinery
$F P=F P(-1) ;$
$S P=S P(-1)$;
*C Rate of first year allowances for industrial buildings
HMRC
NV0 206
$\mathrm{FIB}=\mathrm{FIB}(-1) ;$
*C Rate of annual writing down allowances on industrial buildings HMRC
NV0206

```
SIB = SIB(-1) ;
```

```
*C Rate of annual writing down allowances on vehicles
SV = SV (-1) ;
*C Cost of capital in private sector industry HMT ----- NV0206
{ TZ,RM, & GPM are working variables for COC}
*W TZ = 0 + 0.30*ifle(198201) ;
*W RM = (0.213*(1 - TCPRO)/ (1 - 1.25*TCPRO*((0.5*RS + 0.5*RL)/100 +.015))
    +(0.677*((1 - TPBRZ)*((0.5*RS + 0.5*RL)/100 + 0.015) + 0.1)
    /(((0.5*RS + 0.5*RL)/100 + 0.015)*(1 - TPBRZ)+ 0.1*(1 - TZ))
    + 0.11)*(1 - TPBRZ))*((0.5*RS + 0.5*RL)/100 + 0.015) ;
*W GPM = 0 + 0.20*ifle(197003)*ifgt(196704)
    + 0.25*ifle(196704)*ifgt(196604)
    + 0.20*ifle(196604) ;
COC = PIF/PGVA*(2*(0.6/23 + 0.25/60 + 0.15/10) + RM
    - 1.0*(PGVA/PGVA(-4)-1.0))*(1 - (0.15*(1 + RM)^(-0.25)*SV*TCPRO/(SV + RM)
    + 0.6*(GPM + (TCPRO*(1-GPM)* (SP + FP*RM))/((1 + RM)^1.25*(SP + RM)) + 0.03)
    + 0.25/2.1*(TCPRO*(FIB + SIB*(1 - (1 + RM)^((FIB - 1.0)/SIB))/RM)
    /((1 + RM)^1.25) + 0.03)))/(1 - TCPRO*(1 + RM)^(-1.25)) ;
*C Business investment NPEL T2.7,ET NB0106
dlog(IBUS) = -0.11691*(log(IBUS(-1)/GVA(-1))
    + 0.52642*(log(COC(-1)*PGVA(-1)/
    ((PSAVEI(-1)*(1+(EMPSC (-1)+NIS (-1))/WFP(-1)))/1.15))
    + 0.003534*time(197001)) - 0.40424*log(BCCCU(-1)))
    + 0.5223*dlog(GVA(-3)) + 0.11171*(ifeq(198501)
    - ifeq(198502)) - 0.53 ;
```

* CBI business capacity indicator DCOW(DKCE) T1.1,ET NV0206
$\log (C B I B C)=-2.04-5.5 * \log (G V A /(d i s t l a g(I B U S, 28,1)))-0.47291 * i f e q(198701) ;$
*C British Chambers of Commerce capacity indicator BCC ----- NV0206
$\mathrm{BCCCU}=100-\mathrm{CBIBC}$;
*C General Government GFCF RPZG(RNCZ+RNSM) TA8,EA NV0206
GGI£ = CGI£ + LAI£ ;
*C General Government gross fixed capital formation DLWF TA8,EA NV0206
GGI $=100 *$ GGI£/GGIDEF ;
*C General Government investment deflat
100*(RPZG/DLWF) TA8,EA NV0206

```
ratio(GGIDEF) = ratio(PIF) ;
*C Private sector investment in dwellings DFEA TA8,EA RI1107
dlog(IH) = - 0.31998*log(IH(-1)) + 0.12876*log(APH(-1)/PCE(-1))
    - 0.002701*(RS(-1) - 400*dlog(APH(-1))) - 0.020343*diff(RS(-1)) + 2.86;
*C Public Corporation investment in dwellings DKQH TA8,EA NB0106
ratio(PCIH)=ratio(IH) ;
*C PC investment in existing buildings & transfer costs DLWH TA8,EA NV0308
PCLEB = PCLEB(-1) ;
*C Private sector investment in existing buildings DLWI
IPRL = IPRL(-1) ;
*C Investment in existing buildings and land
=HMT -----
                                    NV0308
ILAND = IPRL + PCLEB + GGLEB ;
*C Total gross fixed capital formation NPQT TA8,EA NV0106
IF = IBUS + GGI + PCIH + PCLEB + IH + IPRL ;
*C Total gross fixed capital formation NPQS TA8,EA NV0106
IF£ = IF*PIF/100 ;
*C HH net acquisitions of non-produced non-fin. assets RPZU TA41,EA NV0106
NPAHH = NPAHH(-1) ;
*C Gross fixed capital formation by HH&NPISH
                                    RPZW TA41,EA
                                    NV1005
*W PI = (PIF-0.08424*APH/1.1122)/(1-0.08424) ;
IHH£ = ( (0.5042*APH/1.1122 + (1-0.5042)*PI)*(0.9881*IH + 0.6713*IPRL)
    + PI*0.0758*IBUS ) / 100 ;
*C Gross fixed capital formation by PNFCs ROAW TA22,EA NV1005
ICC£ =( (0.5042*APH/1.1122 + (1-0.5042)*PI)*(0.0119*IH + 0.3393*IPRL)
    + PI*0.8280*IBUS ) / 100 ;
*C GFCF & net acquisition of land: PCs
                                    ANNQ PSAT2,PF
                                    NV1005
IPC£ = ( (0.5042*APH/1.1122 + (1-0.5042)*PI)*(PCLEB)
    + PI*0.0348*IBUS ) / 100 ;
*C Gross fixed capital formation by FINCOs
RPYQ TA26,EA NV0306
IFC£ = IF£ - IHH£ - ICC£ - LAI£ - CGI£ - IPC£ ;
*C Net acquisitions of valuables NPJR TA2,EA NV0106
VAL = VAL(-1) ;
*C Net acquisitions of valuables
NPJQ
TA2,EA NV0106
```

VAL£ = VAL*PIF/100 ;

```
*C HH Net acquisitions of valuables RPZY TA41,EA NV0106
VALHH = 0.25*VAL£ ;
*C Gross physical wealth of HH&NPISH
CGRP T10.10,BB NV1005
GPW = 0.9933*GPW (-1)*APH/APH(-1) + .001*IHH£ ;
{======== Group 04: The Labour Market ===============================================}
*C Central Government employment G6NQ T4,LM NV0507
log(ECG) = 0.276*log(CGG) + 4.803 ;
*C Local Authority employment G6NT T4,LM NV0507
log(ELA) = 0.269*log(CGG) + 5.024 ;
*C Employees in extraction of oil and gas
CGZH
----- NV0206
ratio(EOIL) = ratio(NSGVA) ;
*C Private sector employment (WFJ) HMT ----- NV0206
dlog(EPS) = 0.72223*dlog(EPS(-1)) + 0.13958*dlog(GVA(-1))
    - 0.063794*(log(EPS(-1)/GVA(-1)) - 0.04 {imposed coefficient}
    * log(COC (-1)*PGVA(-1) /(PSAVEI (-1)*(1+(EMPSC (-1) + NIS (-1))/WFP(-1))))
    + 0.004184*time(197001)) - 0.098514 ;
```



```
POP = POP(-1) ;
*C LFS unemployment (ILO) MGSC T1,LM NV0206
ULFS = ULFS(-1) + 0.30086*diff(ULFS(-1))
    - 0.03045*(ULFS(-1) + IVB(-1) + ED(-1) - POP(-1) + WRGTP(-1) + 0.8*ET(-1))
    - 0.36338*diff(ET) - 0.26885*diff(ET(-1)) + 0.17262*diff(ET(-2))
    - 0.27798*diff(IVB) - 299.978485 ;
```

```
*C LFS unemployment rate
```

*C LFS unemployment rate
MGSX T1,LM
MGSX T1,LM
NV0206
NV0206
LFSUR = 100*ULFS/(ETLFS+ULFS) ;
LFSUR = 100*ULFS/(ETLFS+ULFS) ;
*C Claimant count unemployment BCJD T1A,LM NV0206
*C Claimant count unemployment BCJD T1A,LM NV0206
ratio(U) = ratio(ULFS) ;
ratio(U) = ratio(ULFS) ;
*C Claimant count unemployment rate BCJE T1A,LM NV0206
*C Claimant count unemployment rate BCJE T1A,LM NV0206
UNUKP = 100*U/(U + WFJ) ;
UNUKP = 100*U/(U + WFJ) ;
{========= Group 05: Exports of goods \& services ===================================}
*C Real MTIC related exports BQKQ-BQHR*1000 ??,TD RA0107
XMTIC = XMTIC(-1) ;
*C Nominal MTIC related exports IKBH-IKBB-BQHP*1000 ??,TD RA0107
XMTIC£ = XMTIC£(-1);
*C Exports of non-oil goods ex. MTIC BQAN-(BQKQ-BQHR*1000) T1\&3,TD RA1007
log(XNOX) = log(MKTGS) + log(XNOX(-1)/MKTGS(-1))
- 0.11171*log(XNOX(-3)/MKTGS (-3))
- 0.49475*(dlog(XNOX(-1))-dlog(MKTGS(-1)))
- 0.28600*(dlog(XNOX(-2))-dlog(MKTGS(-2)))
- 0.11171*log(RPRICE) - 0.15139*(ifeq(197901)-ifeq(197902)) + 1.197 ;
*C Exports of non-oil goods inc. erratics
XNO = XNOX + XMTIC ;
*C Exports of goods
BQKQ T1\&3,TD NV0206
XG = XNO + XOIL ;
*C Consumer prices in 14 major economies ---- HMT NV0206
M14CP = M14CP(-1) ;
*C GDP in Euro11 + US + Japan + Canada ---- HMT NV1106
M14GDP = M14GDP(-1) ;
*C Exports of services IKBE T1\&?,TD NB0106
dlog(XS) = - 0.37005*dlog(XS(-1)) - 0.12309*log(XS(-1)/MKTGS(-1))

```
    - 0.092142*log(PXS*RXD/M14CP) - 0.078203*(ifeq(199101))
    - 0.093831*(ifeq(200103) - ifeq(200104)) + 0.683 ;
*C Exports of goods & services IKBK TA2,EA NV0206
X = XS + XG ;
*C Exports of goods & services IKBH T1,TD NV0206
X£ = (XNO*PXNO + XS*PXS + XOIL*PXOIL)/100 ;
*C Relative export prices
CTPC T2.15,ET
                                    NV0206
log(RPRICE) = log((100*PXNO*RXD)/(1.7864*0.7808*WPG)) + 0.053828
    - 0.000604*time(197001) + 0.053828 ;
*C UK export markets for goods & services ---- HMT NV0206
MKTGS = MKTGS (-1) ;
*C World trade in non-oil goods & services ---- NMT NV0206
WTGS = WTGS (-1) ;
{======== Group 06: Imports of goods & services ===================================}
*C Trend specialisation in world trade & ind. production ---- NMT NV0206
SPECX = SPECX(-1) ;
*C Real MTIC related imports IKBL-IKBF-(BQHS*1000) ??,TD RA0107
MMTIC = XMTIC ;
*C Nominal MTIC related imports IKBI-IKBC-(BQHQ*1000) ??,TD RA0107
MMTIC£ = XMTIC£ ;
*C Imports of non-oil goods & services ex. MTIC HMT ??,TD RA0107
*W A = C + DINV + IF - NSGVA + XOIL - MOIL + 0.5*CGG ;
*W OIL = (-XOIL*PXOIL + MOIL*PMOIL + (100*NSGVA*PBRENT)/(OILBASE*RXD))/100 ;
*W DEF = 100*(C£ + DINV£ + IF£ + CGG£ - OIL)
    /(C + DINV + IF + CGG - NSGVA + XOIL - MOIL) ;
*M MNOSX = (0.27996*log(A/A(-3)) * (MNOSX/(A + 0.6*(XNOX + XS)))
    +(1 - 0.24826)*(MNOSX(-1)/(A(-1) + 0.6*(XNOX(-1) + XS(-1))))
    + 0.032262*log(SPECX) - 0.03*log(PMNOSX(-1)/DEF(-1)) + 0.04)
    * (A + 0.6*(XNOX +XS)) ;
*C Imports of non-oil goods & services
                                    (IKBI-ENXO)/ ??,TD
                                    RA0107
*M MNOS = MNOSX + MMTIC ;
*C Total imports of goods & services
M = MNOS + MOIL ;
*C Total imports of goods \& services IKBI T1,TD NVO20
M£ = (MNOS*PMNOS + MOIL*PMOIL)/100 ;
*C Balance of trade in goods \& services
IKBJ T1,TD
\(T B=X £-M £ ;\)
\{======== Group 07: Prices and Wages
*C Union Density - HMT NV0706
UDEN = UDEN (-1) ;
*C Private sector average earnings index (inc. bonus) LNKY T46,ET NV0706
\(\operatorname{dlog}(P S A V E I)=-0.16404 * \log ((\operatorname{PSAVEI}(-1) *(1+(E M P S C+N I S) / W F P))\)
    \(/((\operatorname{PGVA}(-1)) *(\operatorname{GVA}(-1) / E P S(-1))))\)
    \(+0.5751 * d \log (P G V A)+0.14079 * d l o g(P G V A(-1))\)
    \(+0.095662 * \operatorname{dlog}(\) PGVA ( -2 ) )
    + (1 - 0.5751 - 0.14079 - 0.095662)*dlog(PGVA(-3))
    - 0.056197*dlog(LFSUR(-1)) - 0.021586*log(LFSUR(-1))
    + 0.37689*(dlog(GVA) - dlog(EPS))
    \(+0.15531 * \log (U D E N)+0.089114 *(d \log (P R X M I P)-d l o g(P G V A))\)
    - 0.074535*(log(1-(TYEM(-3)+EENIC(-3))/WFP(-3))
    - \(\log (1-(\operatorname{TYEM}(-4)+E E N I C(-4)) / W F P(-4)))-0.178066-0.0133\);
\({ }^{*}\) C CG average earnings index (2000=100) NMAI/C9K9(Q) HMT NV0706
ratio4 (ERCG) = ratio4 (PSAVEI) ;
*C LA average earnings index (2000=100)
NMJF/C9KA (Q)
HMT
NV0706
ratio4(ERLA) = ratio4(PSAVEI) ;
*C Time varying coefficient for wages \& salaries HMT NV0706
ADJW \(=(W F P-(0.046842814 * E R C G * E C G+0.033716902 * E R L A * E L A)) /(P S A V E I *(E P S-E S+E O I L)) ;\)
*C Private Sector Unit Labour Costs (base year=100) ---- HMT NV0706
ULCPS \(=(0.1 * P S A V E I *(1+(E M P S C+N I S) / W F P) *(E P S ~+~ E O I L)) /(0.012016 * G V A) ;\)
*C Produce output Price Index ex. taxes PVNQ ----- NV0707
dlog(PPIY) \(=-0.0771 *(\log (P P I Y(-1))\)
    - (1 - 0.55)*log(PMNOS (-1)) - 0.55*log(ULCPS (-1))
    - 0.0011538*(time (197604)))
    + 0.7231*dlog(PPIY(-1)) + 0.14267*dlog(PMNOS)
    \(+0.011849 *(\log (\operatorname{PBRENT} / \operatorname{RXD})-\log (\operatorname{PBRENT}(-1) / \operatorname{RXD}(-1)))\)
```

+ (1 - 0.14267 - 0.011849 - 0.7231)*dlog(ULCPS) + 0.005009 ;

```
```

*C World Price of Goods
---- HMT
NV0706
WPG = WPG(-1) ;
*C World Price of Basic Materials
WPBM = WPBM(-1) ;
*C AVI of exports of non-oil goods
(BOKG-ELBL)/BQAN T1\&3,TD NV0706
dlog(PXNO) = - 0.11818*(log(PXNO(-1))
-0.5565*log(PPIY(-1)) - (1 - 0.5565)*log(WPG(-1)/RXD(-1))
+ 0.002448*time(197001))
+ 0.84175*dlog(PPIY) + (1 - 0.84175)*(dlog(WPG)-dlog(RXD))
+ 0.042225*ifeq(199301) + 0.062791 ;

```
*C AVI of imports of non-oil goods \& services (IKBI-ENXO)/JTEA T1\&3,TD NV0706
*W RCOM \(=\exp (-\log (W P G)+1.13 * \log (W P B M)+(1-1.13) * \log (P B R E N T)) ;\)
dlog(PMNOS) \(=-0.24762 *((\log (\operatorname{PMNOS}(-1))\)
    - 0.49616*log(WPG(-1)/RXD(-1)) -(1-0.49616)*log(PPIY(-1)))
    + 0.002759*(time(197001)-18))
```

+ 0.045881*log(RCOM)
+ 0.304*(dlog(WPG)-dlog(RXD)) + (1 - 0.304)*dlog(PPIY)
+ 0.063067*ifeq(197804) - 0.073622*ifeq(197903) + 0.13776 ;

```
*C AVI of imports of non-oil goods \& services ex. MTIC
\(\log (\) PMNOSX \()=\log (P M N O S) ;\)
\{NB PMNOSX = 100*(MNOS*PMNOS/100-MMTIC£)/(MNOSX) \}
*C Inventories deflator ---- HMT NV0706
\(\log (P I N V)=0.89295 * \log (P P I Y)+0.10393 * \log (P M N O S)\)
    \(+(1-0.89295-0.10393) * \log ((100 * P B R E N T) /(O I L B A S E * R X D))\);
*C Tax component of RPCOST (base year=100) ---
TAX \(=100 *(42 *\) TPRODE \(/ 4123+58 * T X F U E L / 5619) /(0.0004059 * G V A) ;\)
*C Index of retail price costs ---- HMT NV0706
\(\operatorname{RPCOST}=(61.9 *\) ULCPS \(+(100 * 0.62 *\) PBRENT \() /(O I L B A S E * R X D)\)
    \(+0.88 *\) PMOIL + 32.1*PMNOS + 4.5*TAX )/100 ;
*C Average tax rate on RROSSI
RPTAX \(=\) DUTRPI \(+100 * 0.63 *\) TVAT ;
*C Average rate of duty on RROSSI
```

DUTRPI = (1 + (1/3*Q4 + (1 - 1/3)*Q1)*((PR(-1) +2*PR(-2))/
(PR(-5) + 2*PR(-6)) - 1 + 0.0329)*0.7412
+(1 - 0.7412)*Q1*((PR(-1) + 2*PR(-2))/(PR(-5) + 2*PR(-6))-1))
*RROSSI(-1)*DUTRPI(-1)/RROSSI ;
*C RROSSI: RPIX ex. council tax, rents \& depreciation GUMF HMT NV0706
log(RROSSI) = log(RROSSI(-4)*(1 - 0.01*RPTAX(-4))) - log(1 - 0.01*RPTAX)
+ 0.095484*(d4log(GVA(-1)) - d4log(EPS(-1)))
+ 0.238430*d4log(RPCOST) - 0.07263*d4log(RPCOST(-4))
+(1 - 0.23843 + 0.07263)*log((RROSSI(-1)*(1 - 0.01*RPTAX(-1)))/
(RROSSI(-5)*(1 - 0.01*RPTAX(-5))))
- 0.10667*log(RROSSI(-4)*(1 - 0.01*RPTAX(-4))/RPCOST(-4))
+ 0.063593*d4log(C(-2)) + 0.021759 ;
*C AVI of exports of services IKBB/IKBE T1\&?,TD NV0706
dlog(PXS) = 0.67*dlog(RROSSI) + (1 - 0.67)*dlog(PMNOS)
- 0.156*(log(PXS(-1)) - log(RROSSI(-1))) - 0.794
- 0.064*(ifeq(200103)-ifeq(200104))
-0.063*(ifeq(200503)-ifeq(200504)) ;
*C Housing: Council tax \& rates RPI DOBR T18.2,MD NV0706
ratio(PCT) = (Q1 + Q3 + Q4 + Q2*(ratio4(CC) - 0.007)) ;
*C LA gross rent per house per week ---- HMT NV0706
M HRRPW = HRRPW(-1)(Q1 + Q3 + Q4 + Q2*(PGDP/PGDP(-4))*(1 + 0.05)) ;
*C Housing: Rent RPI CHBF T18.2,MD NV0706
M PRENT = PRENT(-1)(0.3257*(PCE/PCE(-1)) +(1 - 0.3257)*(HRRPW/HRRPW(-1))) ;
*C Consumer Prices Index D7BT T3.1,ET NV0706
CPI = CPI(-1)*(0.955*RROSSI + (1 - 0.955)*PRENT)/(0.955*RROSSI(-1)
+ (1 - 0.955)*PRENT(-1)) - 0.0012 ;

```
```

*C RPI excluding Mortgage Interest Payments

```
*C RPI excluding Mortgage Interest Payments
                                    CHMK T18.2,MD
                                    CHMK T18.2,MD
                                    NV0706
                                    NV0706
PRXMIP = 196.1*(((1-(0.053 + 0.040 + 0.050*ifge(199501))/(1-0.055))
PRXMIP = 196.1*(((1-(0.053 + 0.040 + 0.050*ifge(199501))/(1-0.055))
    *RROSSI)/183.1 + (0.053*PRENT/282.5 + 0.040*PCT/280.7 + 0.050*HD/282.8)
    *RROSSI)/183.1 + (0.053*PRENT/282.5 + 0.040*PCT/280.7 + 0.050*HD/282.8)
    /(1 - 0.055)) ;
    /(1 - 0.055)) ;
*C RPIX Inflation
RPIXINF = 100*(PRXMIP/PRXMIP(-1)-1.0) ;
*C Housing: Mortgage Interest Payments RPI
DOBQ T18.2,MD NV0706
```

*M PRMIP = (1.0150*PRMIP(-1)*RMORT*(1 - TMIRAS))/(RMORT(-1)*(1 - TMIRAS (-1))) ;
*C Retail Prices Index (RPI) CHAW T3.1,ET NV0706
PR = 201.6*((1 - 0.055)*PRXMIP/196.1 + 0.055*PRMIP/351.7);
C Consumers' expenditure deflator 100(ABJQ+HAYE)/NPSP TA2,EA NV1005
log(PCE) = log((PRXMIP - (0.039*PCT + 0.049*HD)/(1 - 0.050))
/(1 - (0.039 + 0.049)/(1-0.050))) - 0.672703 {-0.007159*Q2} ;
*C Interest Rate on Housing Finance ---- HMT NV0706
RHF = RMORT*(1 - TMIRAS*(0.25*(1 - 0.001*LHP/GPW) + 0.001*0.73*LHP/GPW))
- (1 - 0.25*TPBRZ)*(RMORT - RDEP)*(1 - 0.001*LHP/GPW) ;
*C Owner occupancy rate _--- HMT NV0706
OWC = OWC (-1) ;
*C Average House Price T591 NV0706
dlog(APH) = (log(PCE (-1)/PCE (-2)) - 0.035077* log(APH(-1)/PCE (-1))
-0.041557*log((100000*GPW(-1)) /(APH (-1)*OWC (-1)*C (-1)))
-0.000758*(RHF(-1) - 400*dlog(APH (-1)))
+ 0.7957*dlog(C(-1)) + 0.60909*dlog(C(-2))
+ 0.26207*(log(APH(-4)/APH(-5)) - log(PCE(-1)/PCE(-2)))
+ 0.074806*ifeq(197203)
-0.09013*(ifeq(198802) - 0.5*ifge(198803)*ifle(198804)) + 0.1198) ;
*C Housing: Depreciation RPI
CHOO T18.2,MD NV0706
*M ratio(HD) = ratio(APH) ;
*C Investment Costs: I-O analysis ---- HMT NV0706
ICOST = 0.517*ULCPS + 0.406*PMNOS + 0.077*APH ;
*C Investment deflator (total GFCF) NPQS/NPQT T8,EA NV0706
dlog(PIF) = - 0.12413*(log(PIF(-1)/ICOST(-1)) + 0.002064*time(197001))
+0.2231*dlog(PIF(-2)) + 0.2944*dlog(PIF(-4)) + 0.26781*dlog(ICOST)
+(1-0.2231-0.2944-0.26781)*dlog(ICOST (-1))
+ 0.035523 - 0.00437*Q1 ;
{========= Group 08: North Sea Oil
*C GVA in North Sea oil \& gas extraction
UJAD
NSGVA = NSGVA(-1) ;
*C Total domestic demand for oil

```
*W P = (GDPM£(-1) - BPA£(-1) - (NSGVA(-1)*PBRENT (-1)/(OILBASE*RXD (-1))))
    / NNSGVA(-1) ; { Price index of non-oil GVA }
log(TDOIL) = log(TDOIL(-1)) - 0.22617*log(TDOIL(-1)/NNSGVA(-1))
    - 0.050667*log(PBRENT (-1) /(RXD (-1)*P))
    + 1.062500*log(NNSGVA(-1)/NNSGVA(-2)) - 0.001399*time(197001)
    + 0.081032*(ifge(198401)*ifle(198501)) - 0.59867
    - 0.234370*(ifeq(198601) - ifeq(198602)) ;
```

*C Exports of oil BOXX ----- NV0106
XOIL $=0.80 *$ NSGVA ;

* C Imports of oil
BPIX ----- NV0106
MOIL = TDOIL + XOIL - NSGVA ;
*C Price index for exports of oil
dlog(PXOIL) $=\log ((100 *$ PBRENT) $/(O I L B A S E * R X D))$
 - log((100*PBRENT(-1))/(OILBASE*RXD(-1))) ;
*C Price index for imports of oil
(ENXO/BPIX)*100
RA0307
dlog(PMOIL) = dlog(PXOIL) ;
*C North Sea Gross Trading Profits:PNFCs
CAGD
*M NSGTP $=($ NSGVA*PBRENT) $/(O I L B A S E * R X D) ;$
*C Brent crude oil price (\$ per barrel)
ratio(PBRENT) = ratio(WPG) ;
\{======== Group 09: Public Expenditure
*C CG compensation of employees
QWPS

NV1205
CGWS $=$ CGWS (-1) ;
* C LA compensation of employees
QWRY

NV1205
LAWS = LAWS (-1) ;
*C CG procurement expenditure
QWPT
NV1205
$\operatorname{CGP}=\operatorname{CGP}(-1) ;$
*C LA procurement expenditure
QWRZ-NMKK

NV1205
$\operatorname{LAPR}=\operatorname{LAPR}(-1) ;$
*C CG gross fixed capital formation NMES TA31,EA NV0506
CGI£ = CGI£ (-1) ;
*C LA gross fixed capital formation NMOA TA36,EA NV0506
LAI£ = LAI£ (-1) ;

```
*C CG non-trading capital consumption_ NSRN PSAT2,PF PMO907
*W DEPDEL = (TFE£/TFE)/(TFE£(-1)/TFE(-1)) ; {TFE deflator}
*P CGDEP = 0.0072118 ;
RCGIM = CGDEP*(CGSTOCK(-1)*DEPDEL + CGI£) - 100 ;
*C CG net capital stock
CIXK T1.1.1,CS
PM0107
CGSTOCK = (1 - CGDEP)*(CGSTOCK(-1)*DEPDEL + CGI£) ;
*P LADEP = 0.0072128 ;
*C LA non-trading capital consumption
NSRO PSAT2,PF PMO907
RLAIM = LADEP*(LASTOCK(-1)*DEPDEL + LAI£) - 100 ;
*C LA net capital stock
CIXL T1.1.1,CS
PM0107
LASTOCK = (1 - LADEP)*(LASTOCK (-1)*DEPDEL + LAI£) ;
*C General Govt Gross Operating Surplus NMXV PSAT2,PF NV1205
OSGG = RCGIM + RLAIM ;
*C General Govt final consumption NMRP TA2,EA NV1205
CGG£ = (CGWS + LAWS) + (CGP + LAPR) + (RCGIM + RLAIM) ;
*C General Govt final consumption deflator 100*NMRP/NMRY TA2,EA RI1107
log(GGFCD) = -0.12291 + (1 - 0.38288)*log(100*TFE£/TFE)
    + 0.38288*log(ERLA*(1 + EMPSC/WFP))
    + 0.001195*(time(197001) - 68) + 0.01073*Q1 ;
*C General Govt final consumption CVM
NMRY
TA2, EA
NV1205
```

```
CGG = CGG£/(GGFCD/100) ;
```

CGG = CGG£/(GGFCD/100) ;
*C CG subsidies on products
NMCB TA27,EA
NV0506
CGSUBP = CGSUBP(-1)*PGDP/PGDP(-1) ;
*C Payable company tax credits
MDXH

```

``` NV0506
PCOTC = PCOTC(-1) ;
*C Reduced liability company tax credit
 JPPT-MDXH
```

$\qquad$

``` NV0 506
RLCOTC = RLCOTC(-1) ;
*C CG subsidies on production
 NMCC TA27,EA
 NV0506
CGSUBPR = PCOTC + RLCOTC + (CGSUBPR(-1) - PCOTC(-1) - RLCOTC(-1))*ratio(PGDP) ;
*C CG total subsidies: products & production NMCD PSAT2,PF NV0506
CGTSUB = CGSUBP + CGSUBPR ;
*C LA subsidies on production LIUC TA32,EA NV0506
LASUBPR = LASUBPR(-4)*ratio4(PGDP) ;
```

*C LA subsidies on products
ADAK-LIUC T5.3.3,BB
NV0506
LASUBP = LASUBP(-1)*ratio(PGDP) ;
*C LA total subsidies: products \& production
ADAK PSAT2,PF
NV0506
LATSUB = LASUBP + LASUBPR ;
*C LA net social benefits to HH
GZSK PSAT2,PF
NV0506
LASBHH = (0.25*ratio4(PR) + (1 - 0.25)*ratio4(PRENT))*(1 + 0.047)*LASBHH (-4) ;
*C Aggregate External Grant from CG to LA ---- NMT NV0506
AEG = 0.8*(LATSUB + 0.068*LASBHH - 0.75*LAVAT + 0.987*(LAWS + LAPR) +
0.525*(DILAPR + DILACG + DILAPC) - 1.3*DIRLA) ;
*C Total grants from CG to LA QYJR PSAT2,PF NV0506
CGCGLA = AEG + (0.25*PR/PR(-4) + (1 - 0.25)*PRENT/PRENT (-4))
*(1 + 0.024)*(CGCGLA(-4) - AEG(-4)) ;
*C Uprating factor for benefits without statutory requirement
UPLIFT = UPLIFT(-1)*(Q1 + Q3 + Q4 + Q2*((0.15*PR(-2)+(1 - 0.15)*RROSSI(-2))

+ 2*((0.15*PR(-3)+(1 - 0.15)*RROSSI(-3)))) /
((0.15*PR(-6)+(1 - 0.15)*RROSSI (-6))
    + 2*(0.15*PR(-7)+(1 - 0.15)*RROSSI(-7)))) ;
*C Uprating factor for benefits with statutory requirement HMT NV0208
UPRAT = UPRAT(-1)*(Q1 + Q3 + Q4 + Q2*(PR(-2) + 2*PR(-3))
/(PR(-6) + 2*PR(-7))) ;

```
```

*C Cyclical Social Security spending

```
*C Cyclical Social Security spending
 ABBV
 ABBV
 HMT
 HMT
 NV0506
 NV0506
CSS = (.15*.4511 + (1.0 -.15)*.4537)*(1.363999*U + 1000*exp(-. 869 +
CSS = (.15*.4511 + (1.0 -.15)*.4537)*(1.363999*U + 1000*exp(-. 869 +
 .106*(min((time(197001)-33), 73)/4.0 + . 375)))*(.25*(UPLIFT + UPLIFT(-1)
 .106*(min((time(197001)-33), 73)/4.0 + . 375)))*(.25*(UPLIFT + UPLIFT(-1)
 + UPLIFT(-2) + UPLIFT(-3)) + .375*(Q2*diff(UPLIFT) + Q3*diff(UPLIFT(-1))
 + UPLIFT(-2) + UPLIFT(-3)) + .375*(Q2*diff(UPLIFT) + Q3*diff(UPLIFT(-1))
 + Q4*diff(UPLIFT(-2))+ Q1*diff(UPLIFT(-3)))) ;
 + Q4*diff(UPLIFT(-2))+ Q1*diff(UPLIFT(-3)))) ;
*C Number of pensioners inc. widows BDAE T4.1,MD NV0807
*C Number of pensioners inc. widows BDAE T4.1,MD NV0807
NOPENS = NOPENS(-1) ;
NOPENS = NOPENS(-1) ;
*C Number of children receiving child benefits BDAH T4.1,MD NV0506
*C Number of children receiving child benefits BDAH T4.1,MD NV0506
KID = KID(-1) ;
KID = KID(-1) ;
*C CG net social benefits to households GZSJ PSAT2,PF NV0506
*C CG net social benefits to households GZSJ PSAT2,PF NV0506
CGSB = CSS + (WFTCPE + WTCCTC) + MILAPM + MILAPME + VTRCS + 7.25*.013*UPRAT*KID
CGSB = CSS + (WFTCPE + WTCCTC) + MILAPM + MILAPME + VTRCS + 7.25*.013*UPRAT*KID
 +((0.4537*0.116 + 0.5668)*(1 + 0.7)*NOPENS + 702.5)
 +((0.4537*0.116 + 0.5668)*(1 + 0.7)*NOPENS + 702.5)
 * (0.25*(UPRAT + UPRAT(-1) + UPRAT(-2) + UPRAT(-3))
```

    * (0.25*(UPRAT + UPRAT(-1) + UPRAT(-2) + UPRAT(-3))
    ```
```

+ 0.375*(Q2*diff(UPRAT) + Q3*diff(UPRAT(-1))
+ Q4*diff(UPRAT(-2)) + Q1*diff(UPRAT(-3)))) ;

```
*C Debt Interest Payments on Natl Savings
XACX

NV0506
```

*W RNSq = (1 + RNS/100)^(1/4) - 1 ;
*W RNSn = (1 + RNS/100/(1 - TPBRZ) )^(1/4) - 1 ;

```
DIPNSC \(=\operatorname{diff}(\operatorname{NATSAV}(-1)) \star(0.4 * R N S q+0.5 * R N S n+0.1 * \operatorname{diff}(P R) / P R(-1))\)
 \(+(\operatorname{RNSn}(-1)-\operatorname{RNSn}(-2)) * \operatorname{NATSAV}(-2) / 2.5+0.16 * N A T S A V(-2) *(\operatorname{diff}(\operatorname{PR}) / \operatorname{PR}(-1)\)
 - diff(PR(-1))/PR(-2)) + DIPNSC(-1) ;
* Interest payments on gilts redeemed \& other flows _ - - - NMT NV506
REDOTH \(=\) REDOTH (-1) ;
*C Debt interest payments on conventional gilts CUEM ----- NV1105
\({ }^{*}\) W GILTRATE \(=((1-0.4075) * R L+0.4075 * R S) ;\) see CGGILTS \(\}\)
\(\operatorname{DIPLDC}=\operatorname{DIPLDC}(-1)-\operatorname{REDOTH}(-1)+\left((1+\operatorname{GILTRATE}(-1) / 100)^{\wedge} .25-1\right)\)
 * (REDGILT (-1) - dILGILT (-1) + dGILT(-1)) - 20*ifeq(200802) ;
*C Debt interest payments on index-linked gilts CMSU ----- NV1105
\(\operatorname{IILG}=\operatorname{IILG}(-2) * \operatorname{PR}(-3) / \operatorname{PR}(-5)+2 *\left((1+\operatorname{RILG}(-1) / 100)^{\wedge} 0.25-1\right) * \operatorname{lLGILT}(-1) ;\)
*C Accrued uplift on index-linked gilts NMRB ----- NV0506
\(\operatorname{ILGUP}=\operatorname{REVIG}(-1) *(\operatorname{PR}(-2) / \operatorname{PR}(-3)-1) ;\)
*C Index-linked gilts cash uplift NMRB-NMQZ ----- NV0506
ILGCSH \(=\) ILGCSH (-1) ;
*C Accruals adjustment on index-linked gilts -NMQZ ----- NV0506
ILGAC \(=\) ILGCSH - ILGUP ;
*C Stock of floating-rate gilts
FLOATER \(=0\);
*C CG interest/dividends paid: other
diff(DITHER) \(=0\);
*C CG interest/dividends paid to private sector \& RoW NMFX PSAT2,PF NV1007
DICGOP \(=\) DIPNSC + DIPLDC + IILG + ILGUP
 \(+\left((1+(\mathrm{RS}-0.14) / 100)^{\wedge} .25-1\right)^{\star} \mathrm{CGOD}\)
 \(+\left((1+(\mathrm{RS}-0.43) / 100)^{\wedge} .25-1\right) * \mathrm{TBILLS}\)
 \(+\left((1+(\mathrm{RS}+0.26) / 100)^{\wedge} .25-1\right)^{*} \operatorname{FLOATER}(-1)\)
 \(+\left((1+(\operatorname{RS}-2.47) / 100)^{\wedge} .25-1\right) * \operatorname{TXCERT}(-1)\)
 \(+\left((1+(R S+0.43) / 100)^{\wedge} .25-1\right)^{*}(\) FLEASGG - 70)
 + DITHER ;
```

*C LA interest/dividends paid to private sector \& RoW NUGW PSAT2,PF RA0907
*W LARATE = (1-0.8)*RL + 0.8*RS - 0.3 ;
DILAPR = ((1 + LARATE/100)^.25 - 1)*SLAB(-1) ;
*C LA debt interest payments to CG GVHA ----- RA0907
*W PWLBRATE = 0.09*RL + 0.93*RS + 0.5 ;
DILACG = 0.985*DILACG(-1) + ((1 + 0.015)*SLCGLA(-1) - SLCGLA(-2))*
((1 + PWLBRATE/100)^.25 - 1) ;
*C CG debt interest payments to LAs
NUHC
NV0506
DICGLA = DICGLA(-1) ;
*C PC debt interest payments to CG GVHC-ZYHY ----- RA0907
DIPCCG = DIPCCG(-1) + 0.2*SPCBCG(-2)*(((1 + RS/100)^.25-1)
-((1 + RS(-1)/100)^.25-1)) + ((1 + RL/100)^.25-1)*diff(SPCBCG(-1)) ;
*C CG debt interest payments to PCs GVHH-CPBA-GVHG ----- NV0506
DICGPC = DICGPC(-1) ;
*C LA debt interest payments to PCs
CPBA
-----
NV0506
DILAPC = DILAPC(-1) ;
*C PC debt interest payments to LAs
GVHD-ZYHZ
NV0506
DIPCLA = DIPCLA(-1) ;
*C CG NET interest \& dividends from Public Sector ANNY PSAT2,PF NV0507
CGINTRA = DILACG + DIPCCG + DVPCCG - DICGLA - DICGPC ;
*C LA NET interest \& dividends from Public Sector ANPZ PSAT2,PF NV0507
LAINTRA = DIPCLA + DICGLA + DVPCLA - DILACG - DILAPC ;
*C PC NET interest \& dividends from Public Sector ANRW PSAT2,PF NV0507
PCINTRA = DILAPC + DICGPC - DIPCCG - DVPCCG - DIPCLA - DVPCLA ;
*C CG actual social contributions
GCMP 6.1.4S,BB NV0506
CGASC = 0.089546*CGWS ;
*C CG imputed social contributions
CGISC = 0.073208*CGWS ;
*C CG employee social contributions
GITB+GVFJ-GTKW 5.2.4S,BB
NV0307
EESCCG = 0.074260*CGWS ;
*C LA imputed social contributions
GCMN 5.3.4S,BB NV0506
LASC = 0.035970*LAWS ;
*C LA employee social contributions

```
EESCLA = 0.011897*LAWS ;
*C WFTC scoring as Negative Tax -MDYL+LIBJ ----- NV0506
WFTCNT = WFTCNT(-1) ;
*C WFTC scoring as Public Expenditure
MDYN+MDYM

NV0506
WFTCPE = WFTCPE(-1)*((0.15*PR + (1 - 0.15)*RROSSI)/
(0.15*PR(-1)+ (1 - 0.15)*RROSSI (-1))) ;
\begin{tabular}{|c|c|c|c|}
\hline *C CG net current grants abroad & GZSI & PSAT2, PF & NV0506 \\
\hline \multicolumn{4}{|l|}{CGNCGA = ECNET + TROD ;} \\
\hline *C LA net current grants abroad & C626 & PSAT2, PF & NV0307 \\
\hline \multicolumn{4}{|l|}{LANCGA \(=\) LANCGA (-1) ;} \\
\hline * C CG other current grants & NMFC & PSAT2, PF & NV0506 \\
\hline \multicolumn{4}{|l|}{CGOTR \(=\) GNP4 \(+(\operatorname{CGOTR}(-1)-\operatorname{GNP} 4(-1)) *\) ratio (GDPM£ \()\);} \\
\hline *C LA other current grants (to HH) & EBFE & PSAT2, PF & NV0506 \\
\hline \multicolumn{4}{|l|}{LAOTRHH \(=\) LAOTRHH (-1) ;} \\
\hline *C Net privatisation proceeds & -ABIF & ----- & NV0506 \\
\hline \multicolumn{4}{|l|}{NPRIVP \(=\) NPRIVP (-1) ;} \\
\hline *C CG miscellaneous payments & ANRS-ABIF & PSAT2, PF & NV0506 \\
\hline \multicolumn{4}{|l|}{CGMISP \(=\) CGMISP(-1) ;} \\
\hline *C LA miscellaneous expenditure & LSIB & PSAT2, PF & NV0506 \\
\hline \multicolumn{4}{|l|}{LAMISE = LAMISE (-1) ;} \\
\hline *C LA payments of NNDR & CQOQ & ----- & NV0506 \\
\hline \multicolumn{4}{|l|}{LANNDR = LANNDR(-1) ;} \\
\hline *C Lottery financed expenditure & CJSW & - & NV0506 \\
\hline GNLDF \(=\) GNLDF (-1) ; & & & \\
\hline
\end{tabular}
{======== Group 10: Public Sector Receipts ===}
*C Lower rate of income tax ---- HMT NV0606
TPLR = TPLR(-1) ;
*C Basic rate of income tax ---- HMT NV0606
TPBRZ = TPBRZ(-1) ;
*C Higher rate of income tax
 ---- HMT
 NV0606
TPHR = TPHR(-1) ;
*C MIRAS tax rate
 ---- HMT
NV0606
```

```
*C Married Couples Allowance (quarterly rate) ---- HMT NV0606
TPMCA = (1 - Q2)*TPMCA (-1) + (1 + 1.0*((0.5*PR(-2) + PR(-3))/
(0.5*PR(-6) + PR(-7))-1))*TPMCA(-4)*Q2 ;
*C Single Persons Allowance (quarterly rate) ---- HMT NV0606
TPSNA = (1 - Q2)*TPSNA (-1) + (1 + 1.0*((0.5*PR(-2) + PR(-3))/
 (0.5*PR(-6) + PR(-7))-1))*TPSNA(-4)*Q2 ;
*C Age Allowance (quarterly rate)

 HMT NV0606
TPAG = (1 - Q2)*TPAG(-1) + (1 + 1.0*((0.5*PR(-2) + PR(-3))/
 (0.5*PR(-6) + PR(-7))-1))*TPAG(-4)*Q2 ;
*C All tax allowances (quarterly rate) ----- HMT NV0606
*W TPAL = (0.382*TPMCA + 1.000*TPSNA + 0*TPAG)*ifge(199402)
 + (0.382*TPMCA + 0.976*TPSNA + 0.039*TPAG)*ifle(199401) ;
*W TPAL4 = TPAL(-4) ;
*C Lower Rate Band for income tax (quarterly rate) ---- HMT NV0606
LRB = ifle(200801)*((1 - Q2)*LRB(-1)
 +(1 + 1.0*((0.5*PR(-2) + PR(-3))/(0.5*PR(-6) + PR(-7))-1))*LRR(-4)*Q2) ;
*C Basic Rate Band for income tax (quarterly rate) ---- NMT NV0606
BRB = (1 - Q2)* BRB (-1) + (1 + 1.0*((0.5*PR(-2) + PR(-3))/
 (0.5*PR(-6) + PR(-7))-1))*BRB(-4)*Q2 ;
*C Uprating factor
 ---- HMT
 NV0606
MRATE = 0.25*(UPRAT + UPRAT(-1) + UPRAT(-2) + UPRAT(-3))
 + 0.375*(Q2*diff(UPRAT) + Q3*diff(UPRAT(-1)) + Q4*diff(UPRAT(-2))
 + Q1*diff(UPRAT(-3))) ;
```

*C Taxes on income from employment DBBO ----- NV0208
*W AW $=1000 * W F P /(E T-E S) ;\{$ Average employee wage \}
*W TYRT $=(0.46 * 0.5668 * M R A T E * N O P E N S ~-1.989 * T P A L ~+~ 0.1 * 702.5 * M R A T E ~-~ 0.0375 * T P A L ~$
$+(0.332 *(0.8 * 702.5+((1-0.3) * U+.116 * N O P E N S) * .4537)$
$+0.3 * 0.4511 * U) * M R A T E-(0.1896+0.7219) * T P A L) * T P B R Z ~ ; ~$
*M TYEM $=W F P *(T P L R *(\exp (-3 * T P A L / A W) *(1+2 * T P A L / A W+1.5 *(T P A L / A W) \wedge 2))$
$+(T P B R Z-T P L R) *(\exp (-3 *(T P A L+L R B) / A W) *(1+2 *(T P A L+L R B) / A W+$
1.5*((TPAL + LRB)/AW)^2))
$+($ TPHR - TPBRZ $) *(\exp (-3 *(\operatorname{LRB}+\mathrm{BRB}+\mathrm{TPAL}) / A W) *$
$\left.\left.\left(1+2 *(L R B+B R B+T P A L) / A W+1.5 *(((L R B+B R B+T P A L) / A W))^{\wedge} 2\right)\right)\right)$

```
 + TYRT ;
*C Income tax accruals adjustment
\(\qquad\)
INCTAC = 0.5*DIFF(TYEM) ;
*C Taxes on self-employment incomes ZAFG ----- NV0208
W SW = 1000(MI (-4) +WYQC (-4))/ES(-4) ;
TSEOP = (MI (-4)+WYQC (-4))*
 (TPLR (-4)*
 (exp (-3*TPAL4/SW)* (1 + 2*TPAL4/SW + 1.5*(TPAL4/SW)^2))
 +(TPBRZ(-4) - TPLR(-4))*
 (exp (-3* (TPAL4 + LRB(-4))/SW)* (1 + 2* (TPAL4 + LRB (-4))/SW +
 1.5*((TPAL4 + LRB(-4))/SW)^2))
 + (TPHR(-4) - TPBRZ (-4))*
 (exp (-3* (LRB (-4) + BRB (-4) + TPAL4)/SW)*(
 1 + 2* (LRB (-4) + BRB(-4) + TPAL4)/SW +
 1.5*((LRBB(-4) + BRB(-4) + TPAL4)/SW)^2)))
 + 0.13*DIRHH ;
*C Class 1 Employee NIC rate (weighted average) ---- T10.4,AA NV0607
EENIR = EENIR(-1) ;
*C Class 1 Employer NIC rate (weighted average) ---- T10.4,AA NV0607
EMPNIR = EMPNIR(-1) ;
*C Employee NICs higher rate ---- T10.4,AA NV0607
HEENIR = HEENIR(-1) ;
*C Class 4 self-employed NIC rate ---- T10.4,AA NV0707
SENIR = SENIR(-1) ;
*C Lower earnings limit for NICs ---- T10.4,AA NV0606
LL = LL(-1)*(Q1 + Q3 + Q4
 + Q2*((PR(-2) + 2*PR(-3))/(PR(-6) + 2*PR(-7)))) ;
*C Upper earnings limit for NICs ---- T10.4,AA NV0606
UL = (-0.89*ifge(200102) -0.47*ifge(200002)*ifle(200101) + 7.5)*LL ;
*C Employees' (& self-employed) payments of NICs AIIH-CEAN PSF3,PF NV0208
*W ULER = 0.001*UL*(ET - ES)/WFP ;
*W LLER = 0.001*LL*(ET - ES)/WFP ;
W LLPT = 0.001(LL*ifle(200001) + 76*52/4*ifge(200002)
 *ifle(200101) + TPSNA*ifge(200102))
 *(ET - ES)/WFP ;
*W ULES = 0.001*UL*ES/(MI+WYQC) ;
*W LLES = 0.001*LL*ES/(MI+WYQC) ;
```

```
*W EEOUT = 0 + 1.60*ifge(199702) {Employees' NICs contracted out rebate}
 + 1.80*ifge(199302)*ifle(199701)
 + 2.00*ifge(198802)*ifle(199301)
 + 2.15*ifge(198302)*ifle(198801)
 + 2.50*ifge(197802)*ifle(198301) ;
EENIC = WFP*HEENIR/100*(exp (-3*ULER)* (1 + 2*ULER + 1.5*ULER^2))*ifge(200302)
 +WFP*EENIR/100*(1 - (1 - 0.62)*(EEOUT/EENIR))*
 (exp (-3*LLER)* (1 + 2*LLER + 1.5*LLER^2)
 - exp(-3*ULER)*(1 + 2*ULER + 1.5*ULER^2))
 +(MI+WYQC)*SENIR/100* (exp (-3*LLES)*(1 + 2*LLES + 1.5*LLES^2)
 - exp(-3*ULES)*(1 + 2*ULES + 1.5*ULES^2)) ;
```

```
*C Employers' payments of NICs CEAN TG.1.4S,BB NV0208
```

*C Employers' payments of NICs CEAN TG.1.4S,BB NV0208
*W EPOUT = 0 + 3.5*ifge(200202) {Employers' NICs contracted out rebate}
*W EPOUT = 0 + 3.5*ifge(200202) {Employers' NICs contracted out rebate}
+ 3.0*ifge(199302)*ifle(200201)
+ 3.0*ifge(199302)*ifle(200201)
+ 3.8*ifge(198802)*ifle(199301)
+ 3.8*ifge(198802)*ifle(199301)
+4.1*ifge(198302)*ifle(198801)
+4.1*ifge(198302)*ifle(198801)
+4.5*ifge(197802)*ifle(198301) ;
+4.5*ifge(197802)*ifle(198301) ;
EMPNIC = WFP*EMPNIR/100*(exp (-3*LLPT)* (1 + 2*LLPT + 1.5*LLPT^2)
- (1 - 0.62)*((EPOUT/EMPNIR)*
(exp (-3*LLER)* (1 + 2*LLER + 1.5*LLER^2)
- exp(-3*ULER)* (1 + 2*ULER + 1.5*ULER^2))))
- (exp(-3*LLER)*(1 + 2*LLER + 1.5*LLER^2)*ifle(198503)) ;
*C Employers' Natl Insurance Surcharge GTAY(ACEF) T11.1,BB NV0307
NIS = 0 ;
*C National Insurance accruals adjustment ACJY(AIIH-ABLP) ----- NV0207
NICAC = 0.36*(diff(EENIC) + diff(EMPNIC)) + 973*(Q4 - Q2) ;
*C Higher rate of VAT ---- NMT NV0207
TVAT = TVAT (-1) ;
*C VAT-able durables consumption ---- NMT NV0207
VATFAC1 = VATFAC1(-1) ;
*C VAT-able non-durables consumption ---- HMT NV0207
VATFAC2 = VATFAC2(-1) ;
*C Net VAT receipts EYOO T2.1D,FS NV0207
*M VREC = (VATFAC1 (-1)*CDUR£ (-1) + VATFAC2 (-1)*(C£(-1) - CDUR£(-1))
+0.686*CGP(-1) + 0.968*CGI£(-1) + 0.423*IHH£(-1)
+ 0.78*(0.1015*GDPM£(-1))) * TVAT(-1)/(1 + TVAT (-1)) ;

```
* Hydrocarbon oils duty receipts ACDD T2.1D,FS NV0606
ratio(TXFUEL) = ratio(GDPM£) ;
*C Tobacco duty
```

log(TXTOB) = -0.92735 - 0.0035*(time(197001)-9.0) + 0.443868*log(PCE)
+ 0.6299*log(C) - 0.17316*log(PCE(-1)) + 0.17316*log(PCE(-1)/114.1)
+ (1 - 0.443868)*log(PCE/115.3) ;
*C Alcohol duties: beer, wines \& spirits ACDF/G/H/I T2.1D,FS NV0606
log(TXALC) = log(PCE) + 0.64*log(C) - 0.00522*time(197702) - 4.5103
+0.0632*Q2 + 0.1421*Q3 + 0.4228*Q4;

```
LSNS T2.1D,FS
NV0707
```

*C Climate Change Levy

```
*C Climate Change Levy
CCL = CCL (-1) ;
CCL = CCL (-1) ;
*C Aggregates Levy MDUP T2.1D,FS NV0707
*C Aggregates Levy MDUP T2.1D,FS NV0707
AL = AL(-1) ;
AL = AL(-1) ;
*C Climate Change & Agg. Levies accruals adj. LSNU+MDUR+CJRY ------ NV0606
*C Climate Change & Agg. Levies accruals adj. LSNU+MDUR+CJRY ------ NV0606
CCLACA = CCLACA(-1) ;
CCLACA = CCLACA(-1) ;
*C Misc. C&E taxes see Model Doc. T2.1D,FS NV0707
*C Misc. C&E taxes see Model Doc. T2.1D,FS NV0707
{ACAC-EYOO-ACDD-ACDE-ACDF/G/H/I-ADET-LSNS-MDUP }
ratio(TXCUS) = ratio(C£) ;
*C Customs & Excise taxes
 ACAC T2.1D,FS NV0707
CETAX = VREC + TXFUEL + TXTOB + TXALC + EUOT + CCL + AL + TXCUS ;
EXDUTAC = EXDUTAC(-4)*(VREC + TXALC + TXFUEL + OPT + TXMIS)
 /(VREC(-4) + TXALC(-4) + TXFUEL(-4) + OPT(-4) + TXMIS(-4));
*C Rail Franchise Payments LITT ----- NV0208
ratio(RFP) = ratio(C£) ;
*C Misc. taxes on products see Model Doc. T11.1,BB NV0707
{CIQY+GTAZ+CUAG+CUDF+LIYH+EBDB+LITN+DFT3+EG9G+GCSP}
ratio(TXMIS) = ratio(C£) ;
*C Renewable Obligation Certificates (tax on products) EP89 T11.1,BB NV0307
*A ratio(ROCs) = ratio(GDPM£) ;
*C Vehicle Excise Duty
 GTAX
VED = VEDHH + VEDCO ;
*C VED paid by other sectors; production tax GTAX-CDDZ ----- NV0307
VEDCO = VEDCO(-1) ;
*C VED paid by HH; currrent taxes
 CDDZ T11.1,BB
NV0307
```

*C BBC license fees DH7A ----- NVO706
BBC = BBC(-1) ;
*C Passport fees E8A6
PASSPORT = PASSPORT(-1) ;
*C Other household taxes NSFA+NSNP+CQTC ------ NV0706
ratio(OHT) = ratio(GDPM£) ;
*C Other current taxes: rec'd by CG
NMCV-CQOQ
-----
NV0706
OCT = VEDHH + BBC + PASSPORT + OHT ;
*C Betting tax scored as taxes on income \& wealth MIYF see doc. NV0606
BETPRF = BETPRF(-1) ;
*C Betting levies scored as taxes on income \& wealth DW9E see doc. NV0107
BETLEVY = BETLEVY(-1) ;
*C OFGEM renewable energy tax EO2E ------ NV1206
*A ratio(OFGEM) = ratio(GDPM£) ;
*C Other taxes on production see Model Doc. T11.1,BB NV0707
{NMBX-CUKY-GTAY- (GTAX-CDDZ) }
ratio(OPT) = ratiO(GDPM£) ;
*C LA receipts of production taxes NMYH TA32,EA NV0606
*A ratio(LAPT) = ratio(GDPM£) ;
*C Profits of note issue EYWM ----- RA0907
*W NOTERATE = (1-1)*RL(-1)+1*RS (-1) ;
POISS = (MO - COIN)*((1 + (NOTERATE - 0.22)/100)^.25 - 1) ;
*C Dividends from Private Sector to CG ZYIA
DVPSCG = POISS + 25 ;
*C Total CG dividend receipts
ZYIA+ZYHY
DIVRCG = DVPSCG + DVPCCG ;
*C CG interest receipts: earnings on reserves D69u
SK0107
CGC = ((1+(ROSHT - 0.3)/100)^0.25 - 1)*(SRES + SRES(-1))/2 + 25 ;
*C Total CG debt interest receipts GVHA+GVHC+GVHE-ZYHY-ZYIA
PM0907
DIRCG = DILACG + DIPCCG + CGC + OCGASS*((1 + RS/100)^.25 - 1) + 185 ;
*C Total LA debt interest receipts NUHC+GVHD-GVHF-ZYH
RA0907
DIRLA = DIPCLA + DICGLA + SLAM(-1)*((1 + RS/100)^.25 - 1) +
(0.64*(((1 + RMORT/100)^.25 - 1) - ((1 + RS/100)^.25 - 1)) +

```
 (1 - 0.64)*((1 + RL/100)^.25 - 1))*SLAPO(-1) ;
*C CG interest & dividends
CGNDIV = DIRCG + DVPSCG - DILACG - DIPCCG ;
*C LA interest & dividends from Private sector & RoW GVHF PSAT2,PF NV1106
LANDIV = DIRLA - DICGLA - DIPCLA ;
*C PC interest & dividends from Private sector & Ro
 GVHG PSAT2,PF NV1106
PCNDIV = DIPRPC ;
*C Public Sector interest & dividend receipts ANBQ PSAT2,PF NV1106
PSINTR = CGNDIV + LANDIV + PCNDIV ;
*C Household transfers to CG NMEZ TA28,EA NV0606
HHTCG = HHTCG(-1) ;
*C CG rent receipts NMCK-ACEC-BKTK TA27,EA NV0606
RNCG = 1.65*(PIPHH-DIPHH) ;
*C CG rent & other current transfers ANBU PSAT2,PF NV0506
CGRENT = RNCG + HHTCG + NSROY + MOBREV ;
*C LA rent & other current transfers
 ANBX PSAT2,PF
 NV0506
LARENT = LARENT(-1) ;
*C PC rent & other current transfers
 ANCW PSAT2,PF
 NV0506
PCRENT = PCRENT(-1) ;
*C VAT refunds to LAs
 CUCZ
 ----- NV0606
*W VATHOME = 0.22*ifle(198401) + 0.33*ifge(198402) ;
LAVAT = 36.0*ifle(198401) + (0.98*LAPR + 2*LAI£*VATHOME)*(TVAT/(1 + TVAT)) ;
*C VAT refunds (except to LAs) CUNW ----- NV0606
XLAVAT = 0.3012*CGP*(TVAT/ (1 + TVAT)) ;
*C Community charge/council tax accruals NMIS TA33,EA NV0606
CC = (1 - 0.19)*(-AEG + LATSUB + 0.987*(LAWS + LAPR) + 0.068*LASBHH
 - 0.75*LAVAT + 0.525*(DILAPR + DILACG + DILAPC) - 1.3*DIRLA) ;
*C National Non-Domestic Rates Accrued receipts CUKY ------ NV0606
NNDRA = NNDRA (-1)* ((Q1 + Q3 + Q4))
 + NNDRA(-4)*(Q2*(((PR(-2) + PR(-3))/(PR(-6) + PR(-7)))));
*C MIRAS, LAPRAS & PMI scored as receipts GCJG ----- NV0606
MILAPM = MILAPM(-1)*ifge(200002)
 +(0.54*TMIRAS*LHP*((1 + RMORT/100)^.25 - 1))*ifge(199102) ;
```

```
*C MIRAS, LAPRAS & PMI scored as expenditure DCHG+DCHF+GCJJ ----- NV0606
MILAPME = 0.33*MILAPM*ifge(200002) + 0.061*MILAPM*ifle(200001) ;
*C Vocational training relief scored as receipts -MDUF
VTR = 0 ;
*C VTR & other reliefs scored as expenditure IQKI+BKSG+BKSH
```

$\qquad$

```NV0 606
VTRCS = VTRCS(-1) ;
*C Children's tax credit -MDWZ ------ NV0606
CTC = CTC(-1) ;
*C Total income tax credits
 HMT
TAXCRED = MILAPM + VTR + CTC + WFTCNT ;
*C Pension fund tax credits -CFGS ----- NV0306
PFTC = 0 ;
*C Non-HH NPISH tax credits
CFGW-MDYW-MDYU ----- NV0306
NHNPTC = NHNPTC(-1) ;
*C NPISH tax credits
 CFGW
 NV0306
NPISHTC = NPISHTC(-1) ;
*C Working & children's tax credits MDYN
WTCCTC = WTCCTC(-1) ;
*C Income tax gross of tax credits LIPG ----- NV0306
INCTAXG = TYEM + TSEOP + TCINV - INCTAC + VTR + CTC - PFTC - NPISHTC - NHNPTC ;
*C Inheritance tax NMGI(ACCH) TA31,EA NV0606
INHT = INHT(-1) ;
*C Capital Gains tax (paid by HH) QYJX D512 NV0607
CGT = CGT(-1) ;
*C Stamp duty receipts
ACCI T2.1C,FS
 NV0606
ratio(TSD) = 0.76*ratio(EQPR) + 0.24*(PD*APH)/(PD(-1)*APH(-1)) ;
*C Petroleum Revenue Tax
 ACCJ T2.1C,FS
 NV0606
PRT = -122 + 0.077560*NSGTP(-1) + 143*Q1 + 174*Q3
 + 409*ifeq(199701) + 318*ifeq(200503) ;
*C North Sea Royalties ACEC ----- NV0606
NSROY = (0.013684*7.5*(NSGVA(-1)*PBRENT (-1))/(OILBASE*RXD(-1)) - 216.536
 + ifge(198302)*(228*Q1 + 235*Q3) + 184*ifle(198301) - 420*ifeq(198301)
 - 325*ifge(199903))*ifle(200204) ;
```

*C Supplementary Charge on North Sea profits

```
```

SC = SC(-1) ;

```
*C North Sea Corporation Tax Payments DBJY ----- NV0606
\(\operatorname{NSCTP}=0.29948 * \operatorname{NSGTP}(-7) *(\operatorname{TCPRO}(-7)+S C(-7))-(\operatorname{TCPRO}(-2)+S C(-2)) *\)
(0.55334*TCACT (-2) + 1.8571*NSROY(-2) + 0.17629*PRT(-2))
\(+409.4802-303.7928 *\) Q2 + 803*ifeq(198601) + 626*ifeq(199704)
+ 606*ifeq(199804) + 738*ifeq(200104) ;
```

*C Total allowances on PNFCs investment in buildings ---- NMT NV0606

```
diff(SIBICC) = ICC£*SIB ;
*C Capital Allowances due (all companies) ---- T9.1,BB NV0606

CAPAL \(=\left(0.1320^{*}\right.\) \{NB weight of vehicles in total PNFC investment \(\}\)
```

( SV(-01)*ICC£(-01) + SV(-02)*ICC£(-02)

+ SV(-03)*ICC£(-03) + SV(-04)*ICC£(-04)
+(1-SV(-5)) *SV(-05)*ICC£(-05) + (1-SV(-06)) *SV(-06)*ICC£(-06)
+(1-SV(-7)) *SV(-07)*ICC£(-07) + (1-SV(-08)) *SV(-08)*ICC£(-08)
+(1-SV(-9) )^2*SV(-09)*ICC£(-09) + (1-SV(-10))^2*SV(-10)*ICC£(-10)
+ (1-SV(-11))^2*SV(-11)*ICC£(-11) + (1-SV(-12))^2*SV(-12)*ICC£(-12)
+(1-SV(-13))^3*SV(-13)*ICC£(-13) + (1-SV(-14))^3*SV(-14)*ICC£(-14)
+(1-SV(-15))^3*SV(-15)*ICC£(-15) + (1-SV(-16))^3*SV(-16)*ICC£(-16)
+(1-SV(-17))^4*SV(-17)*ICC£(-17) + (1-SV(-18))^4*SV(-18)*ICC£(-18)
+(1-SV(-19))^4*SV(-19)*ICC£(-19) + (1-SV(-20))^4*SV(-20)*ICC£(-20))
+ 0.0229* \{NB weight of vehicles in FINCO investment\}

(		SV (-01)*IFC£ (-01)	$+$		SV(-02)*IFC£(-02)
+		SV (-03)*IFC£(-03)	+		SV(-04)*IFC£ (-04)
+	(1-SV (-5))	*SV(-05)*IFC£(-05)	+	$(1-S V(-06))$	*SV(-06)*IFC£ (-06)
+	(1-SV (-7))	*SV(-07)*IFC£(-07)	+	(1-SV(-08))	*SV(-08)*IFC£(-08)
	(1-SV (-9)	*SV(-09) *IFC£ (-09)		$(1-\operatorname{SV}(-10))$	*SV (-10) *IFC£ (-10)
+	(1-SV (-11))	*SV(-11) *IFC£ (-11)	+	$(1-S V(-12))$	*SV(-12)*IFC£(-12)
	(1-SV (-13))	*SV (-13) *IFC£ (-13)	+	$(1-\operatorname{SV}(-14))$	$3 * S V(-14) * \operatorname{IFCE}(-14)$
	$(1-S V(-15))$	$3 * S V(-15) * \operatorname{IFC£}(-15)$	+	$(1-\operatorname{SV}(-16))$	$3 * \operatorname{SV}(-16) * \operatorname{IFC£}(-16)$
	$(1-\operatorname{SV}(-17))$	$4 * \operatorname{SV}(-17) * \operatorname{IFC£}(-17)$	+	(1-SV(-18))	*SV(-18) *IFC£ (-18)
	(1-SV (-19))	SV (-19)*IFC£ (-19)		(1-SV(-20)	SV (-20)*IFC£ (-20)

+ 0.5653* \{NB weight of plant \& machinery in FINCO investment\}

```
```

(
+
+
+

+ SP(-05)*(1-FP(-05))*IFC£(-05)
+ SP(-06)*(1-FP(-06))*IFC£(-06)
+ SP(-07)*(1-FP(-07))*IFC£(-07)
+ 

FP(-01)*IFC£(-01)
FP(-02)*IFC£(-02)
FP(-03)*IFC£(-03)
FP(-04)*IFC£(-04)
SP(-08)*(1-FP(-08))*IFC£(-08)

```
```

+(1-SP(-09)) *SP(-09)* (1-FP(-09))*IFC£(-09)
+(1-SP(-10)) *SP(-10)* (1-FP(-10))*IFC£(-10)
+(1-SP(-11)) *SP(-11)* (1-FP(-11))*IFC£ (-11)
+(1-SP(-12)) *SP(-12)* (1-FP(-12))*IFC£(-12)
+(1-SP(-13))^2*SP(-13)* (1-FP(-13))*IFC£(-13)
+(1-SP(-14))^2*SP(-14)* (1-FP(-14))*IFC£(-14)
+(1-SP(-15))^2*SP(-15)* (1-FP(-15))*IFC£ (-15)
+(1-SP(-16))^2*SP(-16)* (1-FP(-16))*IFC£(-16)
+(1-SP(-17))^3*SP(-17)* (1-FP(-17))*IFC£ (-17)
+(1-SP(-18))^3*SP(-18)* (1-FP(-18))*IFC£(-18)
+(1-SP(-19))^3*SP(-19)* (1-FP(-19))*IFC£(-19)
+(1-SP(-20))^3*SP(-20)* (1-FP(-20))*\operatorname{IFC£(-20))}
$+0.4771^{*}$ \{NB weight of plant \& machinery in PNFC investment \}

```

```

$+0.3033^{*}$ \{NB weight of buildings in PNFC investment\}

```
```

( FIB(-1)*ICC£(-1) + FIB(-2)*ICC£(-2)

```
(FIB(-1)*ICC£(-1) + FIB(-2)*ICC£(-2)
+ FIB(-3)*ICC£(-3) + FIB(-4)*ICC£(-4) + SIBICC(-5)))*Q1 ;
+ FIB(-3)*ICC£(-3) + FIB(-4)*ICC£(-4) + SIBICC(-5)))*Q1 ;
*C North Sea ACT receipts
_--- HMT
NSACT = NSACT (-1) ;
*C Corporation tax rate
_--- HMT
TCPRO = TCPRO(-1) ;
*C Corporation tax rate: old regime
_--- HMT
```

*C Advance Corporation Tax receipts

```
TCACT = TCACT(-1) ;
```

```
TCACT = TCACT(-1) ;
```

NVO 606

CT1 $=\operatorname{CT1}(-1)$;

```
CT2 = CT2(-1) ;
*C Proxy for taxable profits

HMT
INC = (NNSCTP + NSCTP + PRT + NSROY + TCACT - NSGTP + SAVCO
 + 1.7*NDIVHH + 0.30*DIPD)*TCPRO ;
*C Mainstream CT prior to 1998Q4 - see NNSCTP ---- HMT NV0606
XNNSCT = (1.23630*(distlag(INC(-1),4,1))
 - 0.75674*(distlag(TCACT,4,1) - distlag(NSACT,4,1)
 + CAPAL*distlag(TCPRO(-1),4,1)/4)
 - 0.019642*((distlag(CBIBC(-1),4,1)/4)*
 (distlag(INC(-1),4,1)
 - (distlag(TCACT,4,1) - distlag(NSACT,4,1))
 - CAPAL*distlag(TCPRO(-1),4,1)/4))
 - 1437)/4*Q2 + (1 - Q2)*XNNSCT (-1) ;
*C Onshore mainstream corporation tax ACCD-ACCN-DBBD-DKGZ T2.1C,FS NV0606
NNSCTP = (CT1*XNNSCT + CT2*(1.23630*INC(-1)
 - 0.75674*(TCACT - NSACT
 + (distlag(CAPAL,4,1)*distlag(TCPRO(-1),4,1)/4)
 * (Q1+Q2+Q3+Q4)/4)
 - 0.019642*CBIBC(-1)*(INC(-1) - (TCACT - NSACT)
 - (distlag(CAPAL,4,1)*distlag(TCPRO(-1),4,1)/4)
 * (Q1+Q2+Q3+Q4)/4) + 5250))
 *(1 - ifle(199804)) + ifle(199804)*XNNSCT ;
```

```
*C Capital taxes on companies
```

*C Capital taxes on companies
DKGZ D512
DKGZ D512
TXKCO = TXKCO(-1) ;
TXKCO = TXKCO(-1) ;
*C Corporation tax ACCD-MDXH+JPPT T2.1C,FS NV0606
*C Corporation tax ACCD-MDXH+JPPT T2.1C,FS NV0606
CT = TCACT + NSCTP + NNSCTP + TXKCO + PCOTC + RLCOTC ;
CT = TCACT + NSCTP + NNSCTP + TXKCO + PCOTC + RLCOTC ;
*C Other company taxes on investment GRXE ----- NV0606
*C Other company taxes on investment GRXE ----- NV0606
TCINV = TPBRZ*(0.18*(DICGOP + DICGPC + DICGLA)
TCINV = TPBRZ*(0.18*(DICGOP + DICGPC + DICGLA)
+ 0.21*(DILAPR + DILACG + DILAPC)) ;
+ 0.21*(DILAPR + DILACG + DILAPC)) ;
*C Windfall tax
*C Windfall tax
EYNK T2.1C,FS
EYNK T2.1C,FS
NV0606
NV0606
WINDT = 0 ;
WINDT = 0 ;
*C Spectrum accruals BKTK ------ NV0606
*C Spectrum accruals BKTK ------ NV0606
MOBREV = MOBREV (-1) ;
MOBREV = MOBREV (-1) ;
*C Spectrum accruals adjustment -BKTC ----- NV0606
*C Spectrum accruals adjustment -BKTC ----- NV0606
MOBACC = MOBREV ;
MOBACC = MOBREV ;
*C Net taxes \& social security contributions
*C Net taxes \& social security contributions
---- HMT
---- HMT
NV0606
NV0606
NTSSC = (INCTAXG - TAXCRED + EENIC + EMPNIC - NICAC) + (CGT + INHT + TSD)

```
NTSSC = (INCTAXG - TAXCRED + EENIC + EMPNIC - NICAC) + (CGT + INHT + TSD)
```

```
+ (VREC + LAVAT + XLAVAT + TXALC + TXTOB + TXFUEL + TXMIS)
+ (OCT + BETPRF + BETLEVY - BBC - PASSPORT)
+ (CC + CCACC + NNDRA + LANNDR - NNDACC)
+ (CT - RLCOTC + PRT + NSROY + WINDT - CCLACA) + OFGEM
+ LAPT + OPT + EUOT ;
```

```
{======== Group 11: Balance of Payments ===}
*C GDP-weighted 3 month interest rate: EU+US+Japan+Canada
ROSHT = ROSHT(-1) ;
*C Sterling effective exchange rate
 BK67(AGBG) T7.1A,FS
 NV0206
log(RX) = log(RXE* (1 + 0.0025*RS)/(1 + 0.0025*ROSHT))
 + 0.24*(CB/(GDPM£ - BPA£)) - (log(PXNO(-1)/WPG(-1))
 + log(PXNO(-3)/WPG(-3)) - 2*log(PXNO(-2)/WPG (-2))) ;
```

```
*C Expected sterling effective exchange rate
 BK67(+1) T7.1A,FS
 NV0206
```

$\log (\mathrm{RXE})=\log (\mathrm{RX}(-1)) ;$
*C Sterling-dollar cross rate: \$/£ AUSS T7.1A,FS NV0206
*M RXD $=0.01830804 * R X$;
*C Sterling-euro exchange rate: Euro/£
THAP T7.1A,FS
NV0 206
${ }^{*} \mathrm{M}$ ECUPO $=((1.3725 /(1-0.32)) *(R X / 100-0.32 * R X D / 1.7850))$;
*C GDP-weighted 10y: EU+US+Japan+Canada

HMT

```
ROLT = ROLT(-1) ;
```

*C World equity prices, GDP weighted
HMT
WEQPR = WEQPR(-1) ;
*C Balancing item in BoP account
HHDH T1.1,PB
NV110 6
BAL = 0 ;
*C Stock of Assets HBQA-HCFQ-NLDA-HFBB-LTEB T8.1,PB NV????
$S A S=(((1+0.62702 *(\operatorname{RXD}(-1) / \operatorname{RXD}-1)+(1-0.62702) *(R X(-1) / \operatorname{RX}-1))$
* ( $1+0.25511 *(W E Q P R / W E Q P R(-1)-1)+0.05 *(R O L T(-1) / R O L T-1.0)))$
- 0.10951)*SAS (-1)/GVA£ - 1.028 + 0.012698*(time(197001) + 28))*GVA£ ;
*C Stock of Liabilities HBQB-HCFQ-NLDA-HFBB T8.1,PB NV????
$S L=((-B A L-C B$
$+S L(-1) *(1+0.2786 *(\operatorname{RXD}(-1) / R X D-1)+0.1 *(R X(-1) / R X-1)+$
$\left.0.3735^{*}(\operatorname{EQPR} / \operatorname{EQPR}(-1)-1)+0.05 *(R L(-1) / R L-1)\right)$

- 0.10951*SAS (-1))/GVA£ - 1.028 + 0.012698*(time(197001) + 28))*GVA£ ;

```
*C Changes in reserve assets AIPA(LTCV) T1.2A,FS NV0407
diff(DRES) = 0 ;
*C Stock of reserve assets AIPD(LTEB) T1.1D,FS NV0407
SRES = -DRES + (1 + 0.27*(RXD(-1)/RXD - 1) + 0.25*(RX(-1)/RX - 1))*SRES (-1) ;
*C Rate of return on stock of liabilities HMT NV????
```

$R S L=(0.45348+0.11 * R S+0.55 * R L+0.05 *(100 * F Y C P R / G D P M £-17)$
$+(0.01 * 0.06 *$ PBRENT) $/($ RXD*PGDP) ) ;
*C Rate of return on stock of assets HMT
$R S A=\left(R S L+0.45^{*}(\right.$ ROLT $-R L)+0.09 *($ ROSHT $\left.-R S)+1.62\right)$;
*C Interest, Profits \& Dividends: Credits
T4.1, PB
NV0 307
CIPD $=($ RSA $/ 100) * 0.25 *(S A S+S A S(-1)) / 2 ; ~\{H B O K-(C G G T-H C A T)-H C E H-H H C C\}$
DIPD $=(\mathrm{RSL} / 100) * 0.25 *(S L+S L(-1)) / 2$; $\{$ HBOL-(CGGT-HCAT)-HCEH $\}$
*C CG IPD credits: earnings on reserves (BoP) HHCC TG,BP NV1005
diff(CGCBOP) = diff(CGC) ;
*C Investment income balance
HBOM
TG, PB
NV1005
NIPD = CIPD - DIPD + CGCBOP ;

* C Employees compensation due abroad
IJAI T4.1,PB
NV1005
EECOMPD = 0.0017189*FYEMP ;
*C Employees compensation from abroad
IJAH T4.1,PB
NV1005
EECOMPC = EECOMPC(-1) ;
*C EU subsidies on products
FKNG (ZXIA-ZJZD+FHHS) TA42,EA
NV1007
EUSUBP = 0 ;
*C EU subsidies on production
FHLK (ZJZD) TA42,EA
NV1007
$\operatorname{EUSUBPR}=\operatorname{EUSUBPR}(-1) * \operatorname{ECUPO}(-1) / E C U P O ;$
*C Receipts from EU social fund
H5U3
TH, BP
NV010 6
$\operatorname{EUSF}=\operatorname{EUSF}(-1) * \operatorname{ECUPO}(-1) / E C U P O ;$
*C Net EC contributions (BoP basis) -FKKL-FKIJ T5.1,PB NV0106
$\operatorname{ECNET}=(1-0.5 *(\operatorname{ECUPO}(-1) / \operatorname{ECUPO}-1)) * \operatorname{ECNET}(-1) ;$
*C UK 4th resource contribution to EU
HCSO + HCSM
T5.1, PB
NV0106
GNP4 $=0.010 *((G D P M £+N I P D+E E C O M P C-E E C O M P D) / E C U P O(-4)) ;$
*C UK VAT payments to the EU HCML+FSVL
T5.1, PB NV0506

```
EUVAT = 0.0325*VREC/(0.8267*ECUPO(-4)) ;
*C Payments of taxes on products to EU FJWE+FJWG T5.1,PB NV0606
ratio(EUOT) = ratio(GDPM£) ;
*C Social security benefits paid abroad
FLUK T5.1,PB
 NV0106
BENAB = 0.012*CGSB ;
*C CG non-EC transfer debits
 FJUO-FJCK-HCSO-HCSM
 T5.1, PB
 NV0207
TROD = TROD (-1) ;
*C Tax receipts from abroad
CGDN T5.1,PB
T5.1,PB NV1005
CGITFA = 0.0039380*TYEM ;
*C Tax payments abroad
FLVE T5.1,PB
NV1005
ITA = 0.001115*WFP + 0*CIPD ;
*C HH transfer receipts from abroad
CGDO-NHRX-FLYE T5.1,PB
NV1005
log(HHTFA) = log(HHTFA(-1)*RX(-1)/RX) ;
*C HH transfer payments abroad
 CGDS-FLVY-FHLS-FLVE
T5.1, PB
NV1005
HHTA = 0.0074376*WFP ;
*C Non-life insurance claims & premiums NHRX+FLVY T5.1,PB NV1005
INSURE = INSURE(-1) ;
*C Transfer credits IKBN TH,BP NV1005
TRANC = EUSUBP + HHTFA + EUSF + CGITFA + EUSUBPR - ECNET + INSURE ;
*C Transfer debits IKBO TH,BP NV1005
TRAND = TROD + EUVAT + EUOT + HHTA + GNP4 + BENAB + ITA + INSURE ;
*C Transfers balance
IKBP TH,BP
NV1005
TRANB = TRANC - TRAND ;
*C Central Govt capital transfers abroad FLWB TI,BP NV0106
CGKTA = 0.0424494*KCGPSO ;
*C Capital transfer payments from EU
GTTY
TI,BP
NV0106
EUKT = EUKT(-1) ;
*C Migrants capital transfers from abroad FHJC TI,BP NV0106
log(MIKTFA) = log(MIKTFA(-1)) ;
*C Migrants capital transfers abroad FLWJ TI,BP NV0106
log(MIKTA) = log(MIKTA(-1)) ;
*C Other private sector capital transfers abroad FLWI-FLWJ TI,BP NV0106
OPSKTA = OPSKTA(-1) ;
```

```
*C Net acquisition of non-produced non-fin. assets FHJL-FLWT TI,BP NV0106
NPAA = NPAA(-1) ;
*C Current balance HBOP TB,BP NV1005
CB = TB + (EECOMPC - EECOMPD) + NIPD
 + (EUSUBP + HHTFA + EUSF + CGITFA + EUSUBPR - ECNET)
 - (TROD + EUVAT + EUOT + HHTA + GNP4 + BENAB + ITA) ;
*C Current balance % GDP AA6H T1.1,PB NV1005
CB% = (CB/GDPM£)*100 ;
*C Net lending by Rest of the World RQCH TA12,EA NV0308
NAFROW = - (CB + (EUKT + MIKTFA) - (CGKTA + MIKTA + OPSKTA) + NPAA) ;
{========= Group 12: Public Sector totals ==}
*C Gross Operating Surplus of Public Corporations NRJT PSAT2,PF NV0306
OSPC = 0.025*OS ;
*C Public Corp. dividend payments to Local Authorities ZYHZ ----- NV0306
DVPCLA = DVPCLA(-1)*OSPC/OSPC(-1) ;
*C Public Corp. dividend payments to Central Government ZYHY ----- NV0306
DVPCCG = DVPCCG(-1) ;
DIPRPC = DIPRPC(-1) ;
*C Debt interest receipts of Public Corporations GVHH ----- NV0306
DIRPC = DIPRPC + DICGPC + DILAPC ;
*C PC interest payments to private sector & RoW GZSO PSAT2,PF NV0306
DIPCOP = DIPCOP(-1) ;
*P PCDEP = 0.0080300 ; {PC depreciation rate ~ 3y ma (PCCON/PCSTOCK)}
*C Public Corp. capital consumption NSRM PSAT2,PF
PCCON = PCDEP*(PCSTOCK(-1)*DEPDEL + IPC£) - 25 ;
*C Public Corp. net capital stock
CIXJ T1.1.1,CS NV0107
PCSTOCK = (1 - PCDEP)*(PCSTOCK(-1)*DEPDEL + IPC£) ;
*C Public Corp's change in inventories & valuables
IBPC = IBPC(-1) ;
*C Public Corp. onshore coporation tax payments FCCS PSAT2,PF NV0306
TYPCO = TYPCO(-1) ;
*C PC net lending to private sector & RoW
ANRY PSAT2,PF NV0306
```

PCLEND = PCLEND(-1) ;
*C PC misc. expenditure ANRZ PSAT2,PF NV0306
PCMISE = PCMISE (-1) ;
*C Public Corp. accounts rec./paid ANVQ PSAT2,PF NV0306
PCAC = PCAC (-1) ;
*C Public Corp. adjustment for gilt interest NCXS PSAT2,PF NV0306
PCGILT = PCGILT(-1) ;
*C Public Corp. Other financial transactions
MFTPC = MFTPC(-1) ;
*C FINCOs accruals adjustment DKHH+ZYBE ----- NV0306
FCACA = FCACA(-1) ;
*C Public Sector taxes on Income \& Wealth ANSO PSAT2,PF NV0306
PUBSTIW = TYEM + TSEOP + PRT + TCINV + WINDT + CT + CGT + FCACA
+ BETPRF + BETLEVY + OFGEM - NPISHTC - NHNPTC - TYPCO - PFTC ;
*C Public Sector taxes on Production (\& products) NMYE PSAT2,PF
PUBSTPD = (CETAX - BETPRF) + EXDUTAC + XLAVAT + LAVAT - EUVAT - EUOT
- CCLACA + TSD + ROCS + TXMIS + RFP
+ (NNDRA + NIS + VEDCO + LAPT + OPT) ;

```
```

*C Public Sector Current Receipts ANBT PSAT2,PF

```
*C Public Sector Current Receipts ANBT PSAT2,PF
PSCR = PUBSTIW + PUBSTPD + OCT + CC + INHT + EENIC + EMPNIC
PSCR = PUBSTIW + PUBSTPD + OCT + CC + INHT + EENIC + EMPNIC
 + (RCGIM + RLAIM + OSPC) + PSINTR + (NSROY + MOBREV + RNCG + HHTCG)
 + (RCGIM + RLAIM + OSPC) + PSINTR + (NSROY + MOBREV + RNCG + HHTCG)
 + LARENT + PCRENT ;
 + LARENT + PCRENT ;
*C Public Sector Current Expenditure
*C Public Sector Current Expenditure
 ANLT PSAT2,PF
 ANLT PSAT2,PF
 NV0307
 NV0307
PSCE = (CGWS + CGP + RCGIM + LAWS + LAPR + RLAIM) + (CGTSUB + LATSUB)
PSCE = (CGWS + CGP + RCGIM + LAWS + LAPR + RLAIM) + (CGTSUB + LATSUB)
 + (CGSB + LASBHH) + CGNCGA + LANCGA + (CGOTR + LAOTRHH)
 + (CGSB + LASBHH) + CGNCGA + LANCGA + (CGOTR + LAOTRHH)
 + (DICGOP + DILAPR + DIPCOP) ;
 + (DICGOP + DILAPR + DIPCOP) ;
*C Public Sector Depreciation
 ANNZ PSAT2,PF
 NV0306
DEP = PCCON + RCGIM + RLAIM ;
*C Public Sector Current Budget
ANMU PSAT2,PF NV0306
PSCB = PSCR - PSCE - DEP ;
*C PC capital grants from private sector
ADSE PSAT2,PF NV0306
KPSPC = KPSPC (-1) ;
*C PC capital grants to private sector
MIYZ PSAT2,PF NV0306
```

KPCPS = KPCPS(-1) ;
*C PC capital grants from Central Government -ANND-NMGR-NMGT
KCGPC = KCGPC(-1) ;
*C PC capital grants from Local Authorities ADCF
KGLAPC = KGLAPC(-1) ;
*C Capital grants by CG to private sector \& ROW
KCGPSO = KCGPSO(-4)*PIF/PIF(-4) ;
*C Capital grants by private sector (\&RoW) to CG
ANNN PSAT2,PF
KPSCG = KPSCG(-1) ;
*C Capital grants by private sector (\&RoW) to LA ANNO PSAT2,PF NV0606
KGLA = 0.8*EUKT ;
*C Total capital transfers by LA
KLA = KLA(-4)*PIF/PIF(-4);
*C Capital grants by CG to LA
$\qquad$

```
KCGLA = KCGLA(-4)*PIF/PIF(-4);
*C CG net acquisitions Non-Produced Non-Fin. Asse
 NMFG TA31,EA
NPACG = NPACG(-1) ;
*C LA net acquisitions Non-Produced Non-Fin. Assets
 NMOD
 TA31,EA
 NV0506
NPALA = NPALA(-1) ;
*C Public Sector Gross Investment
 HMT
 NV0306
PSGI = CGI£ + LAI£ + IPC£ + IBPC + DINVCG + (NPACG + NPALA)
 + (KCGPSO - KPSCG) + (KLA - KGLAPC - KGLA) + (KPCPS - KPSPC)
 + ASSETSA ;
*C Public Sector fixed asset sales
ASSETSA = ASSETSA(-1) ;
*C Public Sector Net Investment ANNW PSAT2,PF NV0306
PSNI = PSGI - DEP - ASSETSA ;
*C Total Managed Expenditure ANLT+ANNZ-ANNW PSAT2,PF
TME = PSCE + DEP + PSNI ;
*C Central Government Net Borrowing -NMFJ PSAT2,PF
 NV0507
CGNB = (CGWS + CGP) + CGTSUB + CGSB + CGNCGA + CGCGLA + CGOTR + DICGOP
 + (CGI£ + NPACG) + DINVCG + (KCGLA + KCGPC) + KCGPSO - KPSCG
 - (PUBSTIW + TYPCO) - (PUBSTPD - LAPT) - (OCT + LANNDR) - INHT
```

```
 - (EMPNIC + EENIC) - CGNDIV - CGINTRA - (NSROY + RNCG + HHTCG + MOBREV) ;
*C Local Authority Net Borrowing -NMOE PSAT2,PF NV0307
LANB = (LAWS + LAPR) + LATSUB + LASBHH + LANCGA - CGCGLA + LAOTRHH + DILAPR
 + (LAI£ + NPALA) - KCGLA + (KLA - KGLAPC) - KGLA
 - LAPT - (CC - LANNDR) - LAINTRA - LANDIV - LARENT ;
*C General Govt Net Borrowing (NSA) -NNBK PSAT2,PF NV0206
GGNB = CGNB + LANB ;
*C Public Corporations Net Borrowing (NSA) -CPCM PSAT2,PF NV0206
PCNB = DIPCOP + IPC£ + IBPC - (KCGPC + KGLAPC) + KPCPS - KPSPC
 + TYPCO - OSPC - PCNDIV - PCINTRA - PCRENT ;
*C Public Sector Net Borrowing (NSA)
 -ANNX PSAT2,PF NV0506
PSNBNSA = - PSCB + PSNI ;
*C Public Sector Net Borrowing (CYSA) -RQBN-RPZD T14.5E,FS NV0506
PSNBCY = PSNBNSA ;
*C Swap adjustments
SWAPS = 0 ;
*C CG net borrowing: Maastricht definition
 MDUK HMT
 NV0906
TDEF = CGNB + LANB + SWAPS ;
*C CG loans & sales of financial assets ANRH+ANRS PSAT2,PF NV0306
CGLSFA = (LCGOS + LCGPR) + (CGMISP - NPRIVP) ;
*C Public Sector loans & sales of financial assets ANSU+ANSV PSAT2,PF NV0306
PSLSFA = CGLSFA + (LALEND + LAMISE) + (PCLEND + PCMISE) {adjust(PCBRO)} ;
*C Council Tax accruals adjustment -CDXW-ADDC ----- NV0606
CCACC = CCACC(-4) ;
*C LA NNDR accruals adjustment
 CULD-CCXN

 NV0606
LANDRAA = LANDRAA(-4) ;
*C LA accounts receivable/payable -ANML PSAT2,PF NV0606
LAAC = CCACC + LANDRAA ; {LAACADJ = CCACC + CGNDRAA + NNDACC}
*C LA misc. financial transactions ANMW PSAT2,PF NV0506
LAMFT = LAMFT(-1) ;
*C Accruals adjustment on conventional gilts -GCSW-GCMR ----- NV0506
CONACC = CONACC(-1) ;
*C CG misc. financial transactions
-ANRV PSAT2,PF NV0506
```

MFTRAN = MFTRAN(-1) ;
*C CG NNDR end-year adjustment
CGNDRAA = CGNDRAA(-4) ;
*C NNDR end-year adjustment
CUKY+CQOQ+CQTC-CEIP-LNFO
see doc. PSAT2,PF
{ ANRT -(RUSD+ACJY+(CYNX+RUTC+DKHE+DBKE)+(LNFP+CULD)-BKTC+(DKHH+ZYBE)) }
CGACRES = 0 ;
*C Central Govt accruals adjustments
ANRT+ANRU+ANRV PSAT2,PF
CGACADJ = (EXDUTAC + NICAC + INCTAC) + CGNDRAA + MOBACC + FCACA
+ CGACRES + (ILGAC + CONACC) - MFTRAN ;
*C Public Sector accruals adjustments
ANSW+ANSX+ANSY PSAT2,PF
NV0306
PSACADJ = CGACADJ - LAAC + LAMFT + PCAC + PCGILT + MFTPC {adjust(LABRO) } ;
*C Public Sector Financial Assets NKFB+NPUP T12.1K,FS
NV1005
PSFA = PSFA(-1) ;
*C Other Public Sector Financial Liabilities
NKIF+NPVQ-NIJI-ACUA
OFLPS = OFLPS(-1) ;
*C Stock of Index-linked gilts (market value)
HMT
diff(MKTIG)=diff(REVIG) ;
*C Stock of CG gilts excluding linkers
NIJI-MKTIG T12.1L,FS
NV0507
CGGILTS = CGGILTS(-1)*(1 + GILTRATE(-1)/100)/(1 + GILTRATE/100)
+ 0.5*(dGILT - dILGILT)*(1 + (1+GILTRATE (-1)/100)/(1+GILTRATE/100)) ;
*C Public Sector Financial Liabilities
NKIF+NPVQ T12.1K,FS NV1005
PSFL = CGGILTS + OFLPS + NATSAV + MKTIG ;
*C Public Sector Tangible Assets (end period)
CGJA T10.11,BB
NV1005
PSTA = PSTA(-1)*ratio(PIF)
+ 0.5*(PSNI + KCGPC + KGLAPC - KLA - KCGPSO - NPRIVP)*(1 + ratio(GGIDEF)) ;
*C Public Sector Net Worth (end period) CGTY T10.11,BB NV1005
PSNW = PSTA + PSFA - PSFL ;
{======== Group 14: Domestic financial sector =====================================}
*C Short rates: 3 month inter-bank rate
AMIJ T7.10,FS NV0907
diff(RS) = 0 ;

```
```

*C Long rates: 20 year gilt yield
RL = RL(-1) - 6.6025*dlog(RX) + 0.64109*diff(ROLT) + 0.23966*diff(ROLT(-1))
- 0.86131*log(EQPR/EQPR(-2)) - 0.12144*(RL(-1)-RL(-3))
- 0.062*(RL(-1) - RS(-1))+ 0.23338*diff(RS) - 0.039263 ;

```
```

*C Building Soc. average mortgage rate

```
*C Building Soc. average mortgage rate
AJNL T7.1L,FS
RMORT = RS + 0.45 ;
*C Building Soc. share & deposit average rate
AJNV T7.1L,FS
RA1007
diff(RDEP) = 0.6{0.75}*diff(RS)-0.27*(RDEP(-1)+0.5{0.66}-RS(-1));
*C Rate of return on National Savings NSI
NV1105
diff(RNS) = 0.49237*(RDEP*(1 - TPBRZ(-1)) - RDEP(-1)*(1 - TPBRZ(-2)))
 + 0.11088*(RDEP(-1)*(1 - TPBRZ(-2)) - RNS(-1)) - 0.042818 ;
*C Real interest rate on index-linked gilts HMT T7.1D,FS RA0907
RILG = 0.30082*(0.60*RS + (1-0.60)*RL - (ratio4(PR)*100-100))
 + 1.6229 + 0.64108*ifle(199702) ;
*C Equity price index: FT all-share HSEL ----- NV0206
dlog(EQPR) = -0.24438*log(EQPR(-1)/NDIVHH) - 0.095187*log(RL) + 0.33415
 - 0.068969*(ifeq(199903) - ifeq(199904)) - 0.21866*ifge(198704) ;
*C Notes & coins in circulation outside BoE AVAB T3.1A,FS NV0206
dlog(MO) = dlog(PGDP) + 0.20311*(dlog(M0(-1)) - dlog(PGDP(-1)))
 - 0.10069*log(M0 (-1)/GDPM£(-1))
 + 0.3331*(log(GDPM)+ log(GDPM(-2))- 2*log(GDPM(-1)))
 - 0.004514*(RDEP(-1)*(1 - TPBRZ(-2))) + 0.019646*ifeq(199904)
 -0.000863*min((time(197001)+28),128) - 0.073283 ;
*C Broad money (M4), (FYSA) AUYN T3.1G,FS NV0206
dlog(M4) = dlog(PCE) - 0.042894*log(M4 (-1)/GFWPE (-1))
 + 0.31211*(dlog(M4(-1)) - dlog(PCE(-1))) + 0.58112*dlog(GDPM)
 + 0.002821*(RS - 0.5*(RS+RL)) - 0.013111 - 0.000236*(time(197001)+28)
 - 0.05196*ifeq(199703) ;
```

*C HH loans secured on dwellings NNRP TA64,EA NV0206
$d \log (\operatorname{LHP})=0.421250 * \log (\operatorname{LHP}(-1))-0.05196 * \log (\operatorname{LHP}(-1) / G P W(-1))$
$-0.006164 * \log (\operatorname{UNUKP}(-1))+.091352^{*}(\mathrm{dlog}(\mathrm{APH})-\mathrm{dlog}(\mathrm{PCE}))$
- 0.001698*RHF + 0.325920-0.011846*ifeq(198804);
*C HH other financial liabilities
NNPP-NNRP TA64,EA NV0206

```
dlog(OLPE) = dlog(PCE) - 0.2909*log(OLPE(-1)/PCE(-1)) + 0.37476*dlog(RHHDI(-1))
 + 0.20866*dlog(RHHDI(-2)) - 0.086485*log(UNUKP(-1)) + 2.3669
 - 0.001625*(RS (-1) - 100*(PCE (-1)/PCE (-5)-1.0)) ;
```

```
*C HH statistical adjustment on financial account NZDV TA53,EA NV1006
UNIDPE = UNIDPE (-1) ;
*C HH net financial wealth NZEA TA64,EA NV0206
W RXREV = 0.43 (RXD (-1)/RXD) + (1 - 0.43)*(RX(-1)/RX) ;
NFWPE = - LHP(-1) - OLPE(-1) - UNIDPE + NAFHH
 + (0.36*ratio(EQPR) + 0.11*(RL(-1)/RL) + 0.07*ratio(PGDP) + 0.38
 + 0.08*(0.75*ratio(WEQPR) + 0.25*(ROLT (-1)/ROLT))*RXREV)
 * (NFWPE(-1) + OLPE (-1) + LHP(-1)) ;
*C HH gross financial wealth
 NNML TA64,EA NV0206
GFWPE = NFWPE + LHP + OLPE ;
*C Bank borrowing by PNFCs (short term) NLBF+NLBG T12.1D,FS NV1005
dlog(BBIC) = 0.354290*dlog(BBIC(-1)) - 0.092656*log(BBIC(-1)/ICC£(-1))
 + 0.095404*dlog(ICC£) - 0.19621*dlog(RX) + 0.22781 ;
*C BoE Issue Dept holdings of commercial bills HMT
diff(IDBILL) = 0 ;
*C Short term interest payments by PNFCs
HMT
NV0807
STIPIC = ((1 + (RS + 1.93)/100)^.25-1)*(BBIC(-1)-IDBILL(-1)) +
 0.8*((1 + (RS - 0.26)/100)^.25-1)*IDBILL(-1) ;
```

*C PNFC'S gross liquid assets
AIEL T12.1D,FS
NV????
$\operatorname{LIQIC}=((1+0.18 *(0.2 * R X(-1) / R X+0.8 * R X D(-1) / R X D-1)) * \operatorname{LIQIC}(-1)$
+ NAFIC + diff(BBIC)) ;
$\begin{array}{lll}\text { \{========= Group 15: Income Account }================================================\} \\ \text { *C Wages \& salaries inc. benefits in kind } & \text { DTWM-ROYK TA3, EA NV0507 }\end{array}$
$W F P=A D J W * P S A V E I *(E P S-E S+E O I L)+0.046842814 * E R C G * E C G+0.033716902 * E R L A * E L A$;
*C Mixed income RNKX(ROYH) TA12,EA NV0106
$\mathrm{dlog}(\mathrm{MI})=\mathrm{dlog}(E S)+0.38422^{*}(\mathrm{dlog}(M I(-1))-\mathrm{dlog}(E S(-1)))$
- 0.066988*log(MI (-1)/(ES(-1)*PSAVEI(-1))) - 0.20718
+ 0.052219*(ifeq(199601) - ifeq(199602))
- 0.040964*(ifeq(200002) - ifeq(200003))
- 0.040736*(ifeq(200104) - ifeq(200201));

```
*C Employers' social contributions
ROYK T6.1.4S,BB
NV1005
EMPSC = EMPISC + CGASC + EMPNIC + EMPCPP ;
*C Compensation of employees DTWM TA3,EA NV1105
FYEMP = WFP + EMPSC ;
*C Employers' imputed social contributions
NQDK T6.1.4S,BB
NV1005
EMPISC = HHISC + LASC + CGISC + 0.007005*WFP ;
*C Household imputed social contributionsRVFH T6.1.4S,BBNV1005
HHISC = 0.000861*WFP ;
*C Household social benefits
QWMZ T6.1.4S,BB
NV1005
HHSB = 2*HHISC ;
*C HH private funded social benefits (pensions)
RNLL T6.1.4S,BB
RA0108
ratio(OSB) = ratio(PCE) ;
*C Household social benefits
RPHL T6.1.4S,BB NV1005
SBHH = EMPISC + OSB + (HHSB - HHISC) + CGSB + LASBHH + EESCLA + EESCCG +
 CGASC - BENAB ;
*C Household current taxes on income & wealth RPHS+RPHT TA38,EA NV1105
TYWHH = TYEM + TSEOP + CC + CGT + OCT - NPISHTC + 0*CGITFA + 0*ITA ;
*C Net misc. transfer receipts of HH (&NPISH) RPHO-RPID T6.1.4,BB RA0807
NMTRHH = LAOTRHH + (CGOTR-HHTCG) + (HHTFA-HHTA) + (EUSF-GNP4) + 0.00280*FYCPR ;
*C Total interest payments of HH (&NPISH) ROYU TA37,EA NV0208
DIPHH = LHP(-1)*((1 + RMORT/100)^0.25 - 1)
 + OLPE(-1)*((1 + (RS + 0.764)/100)^0.25 - 1)
 + 0.011003*DIPD + 0*((1+(RS+5)/100)^.25-1)*SLCGPR ;
*C Total interest receipts of HH (&NPISH) ROYM TA37,EA NV0208
DIRHH = 0.54314*M4 (-1)*((1+(RDEP -0.68738)/100)^.25-1) + DIPNSC
 + 0.05079*DIPLDC + 0.00834*CIPD ;
*C Withdrawals of income from quasi-corporations, D422 NBOJ TA20,EA NV0807
WYQC = 0.08880*(GTPIC-NSGTP) ;
*C Dividend receipts of HH (&NPISH), D421
 NRKU T6.1.3,BB NV0106
ratio(NDIVHH) = ratio(GDPM£) ;
*C Attributed property income of ins. policy holders ROYP TA37,EA NV0807
APIIH = 0.95*(IILG + ILGUP) + 0.02253*((1+(RDEP+0)/100)^.25-1)*M4 (-1)
 +0.75296*DIPLDC + 0.14566*CIPD + 0.93100*NDIVHH ;
```

```
*C Property income rec'd by HH (&NPISH)
ROYL TA37,EA
NV1005
PIRHH = NDIVHH + APIIH + DIRHH + WYQC ;
*C Property income paid by HH (&NPISH)
ROYT
TA37,EA
NV1005
PIPHH = DIPHH ;
*C Employees' pension contributions
RNNN T6.1.4S,BB
RA0707
*M ratio4(EECPP)=ratio4(APIIH) ;
*C Employees' social contributions RPHX+RPHY TA38,EA NV1105
EESC = EESCLA + EENIC + EECPP + EESCCG ;
*C Household disposable income RPHQ TA38,EA NV1105
HHDI = MI + FYEMP - EMPSC - EESC - TYWHH + NMTRHH + SBHH + (PIRHH - PIPHH)
 - HHSB + HHISC + (EECOMPC - EECOMPD) + OSHH ;
*C Real household disposable income NRJR TA38,EA NV1105
RHHDI = 100*HHDI/PCE ;
*C Employers' contributions to funded pension schemes RNNG T6.1.4S,BB
NV1105
EMPCPP = 0.075830759*WFP ;
NRJR TA40,EA NV1105
NEAHH = EMPCPP + EECPP - OSB ;
*C Household (&NPISH) gross savin
RPQL TA40,EA
NV1105
SVHH = HHDI + NEAHH - C£ ;
*C Households' saving ratio
NRJS TA40,EA
NV1105
SY = 100*(SVHH/(NEAHH+HHDI)) ;
*C Net capital transfers of HH (&NPISH) RPVO+RPVP-RPVS-RPVT TA41,EA NV1005
KGHH = - INHT + MIKTFA - MIKTA + 0.95*KLA + 0.55*KCGPSO + 0.4*EUKT ;
*C Net acquisition of financial assets: HH
NAFHH = SVHH + KGHH - DINVHH - VALHH - NPAHH - IHH£ ;
*C Net acquisition of financial assets: companies RPYN+RQBV TA22,EA NV1105
NAFCO = -NAFHH + CB + EUKT + (MIKTFA - MIKTA) - CGKTA - OPSKTA + NPAA
 + SDE£ - SDI + PSNBCY ;
*C Net acquisition of financial assets: FINCOs
RPYN TA26,EA
NV1105
NAFFC = NAFFC(-1) ;
*C Net acquisition of financial assets: PNFCs
RQBV TA22,EA
NV1105
NAFIC = NAFCO - NAFFC ;
*C Company gross saving: PNFCs & FINCOs
```

SAVCO = NAFCO + KGHH - DINVHH + DINV£ - DINVCG + VAL£ - VALHH - NPAHH
+ IF£ - IHH£ - NPACG - CGI£ - KLA - KCGPSO - LAI£ - NPALA + INHT
+ KGLA - EUKT - MIKTFA + MIKTA + CGKTA + OPSKTA - NPAA - IPC£ - IBPC ;
*C Gross Trading Profits: PNFCs
CAED+CAGD TK1,QA NV1005
GTPIC = FYCPR ;
{========= Group 16: Gross Domestic Product
*C Total Final Expenditure at current prices ABMF TA2,EA NV1205
TFE£ = CGG£ + C£ + DINV£ + VAL£ + IF£ + X£ ;
TFE£X = CGG£ + C£ + DINV£ + VAL£ + IF£ + (X£-XMTIC£) ;
*C Statistical Discrepancy: GDP(E) GIXM TA2,EA NV1205
SDE£ = PGDP*SDE/100 ;
*C Gross Domestic Product at market prices YBHA TA2,EA NV1205
GDPM£ = TFE£ - M£ + SDE£ ;
*C Gross Domestic Product at market prices NSA BKTL TA2,EA NV1205
MGDPNSA = GDPM£ ;
*C Basic Price Adjustment at current prices YBHA-ABML(NTAP) TA1,EA NV0307
BPA£ = (CETAX - BETPRF) + EXDUTAC + XLAVAT + LAVAT + TSD + TXMIS + ROCS
- (EUSUBP + LASUBP + CGSUBP + CCLACA) ;
*C Gross Value Added at basic prices ABML TA1,EA NV1205
GVA£ = GDPM£ - BPA£ ;
*C Total Final Expenditure at constant prices
ABMG
TA2,EA NV1205
TFE = CGG + C + DINV + VAL + IF + X ;
TFEX = CGG + C + DINV + VAL + IF + (X-XMTIC) ;
*C Statistical Discrepancy: GDP(E) GIXS TA2,EA NV1205
SDE = SDE (-1) ;
*C Gross Domestic Product at market prices, CVM ABMI TA2,EA NV1205
GDPM = TFE - M + SDE ;
*C Basic Price Adjustment, CVM NTAO TA1,EA NV1205
ratio(BPA) = ratio(GDPM) ;
*C Gross Value Added at basic prices, CVM ABMM TA1,EA NV1205
GVA = GDPM - BPA ;
*C Gross Value Added deflator

```
PGVA = 100*GVA£/GVA ;
*C Gross Domestic Product deflator YBGB TA1,EA NV1205
PGDP = 100*GDPM£/GDPM ;
*C Taxes less subsidies on production
 NV0307
TPRODE = NNDRA + NIS + VEDCO + OPT + LAPT - CGSUBPR - LASUBPR - EUSUBPR ;
ABMM-YBHH TA1,EA NV1205
ratio(TPROD) = ratio(GVA) ;
*C Gross Domestic Product at factor cost, CVM
YBHH
TA1,EA
NV1205
GFC = GVA - TPROD ;
*C GDP income measure at market prices
YBHA
TA1,EA NV1205
GDPI = GDPM£ ;
*C Statistical Discrepancy: GDP(I)
GIXQ
TA3,EA
NV1205
SDI = SDI(-1) ;
*C Whole economy Gross Operating Surplus
ABNG
TA11,EA
NV1205
OS = GDPI - FYEMP - MI - BPA£ - TPROD£ - SDI ;
*C Private sector companies rental income DTWR+DTWS TK1,QA NV1205
ratio(RENTCO) = ratio(GDPM£) ;
*C Household & NPISH Gross Operating Surplus CAEN TA11,EA NV1205
ratio(OSHH) = ratiO(GDPM£) ;
*C Gross trading profits of all companies CAED+CAGD+RITQ TA11,EA NV1205
FYCPR = OS - OSHH - OSGG - OSPC - RENTCO + SA ;
*C Gross National Income at market prices
 ABMZ T1.2,BB
GNI£ = GDPM£ + NIPD + (EECOMPC-EECOMPD) + (EUSUBPR+EUSUBP) - (EUOT+EUVAT) ;
log(MANGVA) = log(GVA) + (1.0 - 0.14935)* log(MANGVA(-1)/GVA(-1))
 + 0.24955*(dlog(MANGVA(-2))-dlog(GVA (-2)))
 -0.051343*dlog(RPRICE) - 0.040646*log(RPRICE (-1))
 - 0.000403*(time(197001) - 54) - 0.93302 ;
```



```
*C CG net lending to RoW
LCGOS = LCGOS(-1) ;
*C CG net lending to private sector
 ANRH-HEUC PSAT2,PF NV0506
LCGPR = LCGPR(-1) ;
*C Net lending by CG to PCs
ABEI T1.4A,FS
NV0506
LCGPC = LCGPC(-1) ;
*C Net lending by CG to LAs
ABEC T1.3A,FS NV0506
LCGLA = LCGLA(-1) ;
*C LA net lending to private sector & RoW
ADDU PSAT2,PF NV0506
LALEND = LALEND(-1) ;
*C LA market borrowing net CG/PC debt
AAZK T1.1E,FS NV0506
LABRO = LANB + LALEND + LAMISE - LCGLA - LAAC ;
*C PC market borrowing net CG/PC debt
AAZL T1.1E,FS NV0506
PCBRO = PCNB - LCGPC + MFTPC ;
*C Stock of LA debt held by CG
 ADHC+ADKF+GVHA T1.3B,FS
 NV0506
SLCGLA = SLCGLA(-1) + LCGLA ;
*C Stock of LA market borrowing ADKA-ADKE-ADKF+ADHA-ADHC T1.3C,FS NV0506
diff(SLAB) = 0 ;
*C Stock of LA monetary assets ADNA-ADNJ T1.3D,FS NV0506
diff(SLAM) = diff(SLAB) - LABRO ;
*C Stock of private sector debt held by LAs ADNJ+APEN+RDLA T1.3D,FS NV0506
diff(SLAPO) = LALEND ;
*C Stock of PC debt held by CG EYXY T1.1D,FS NV0308
diff(SPCBCG) = LCGPC ;
*C Stock of CG lending to private sector RCPH+RDZU+READ+RMAT
```

$\qquad$
diff(SLCGPR) = LCGPR ;
*C CG Net Cash Requirement RUUW T1.2A,FS NV0506
CGNCR = CGNB + CGLSFA + CGACADJ + LCGLA + LCGPC ;
*C Public Sector Net Cash Requirement
RURQ T1.2A,FS NV0506
PSNCR = PSNBNSA + PSLSFA + PSACADJ ;
*C Stock of coins
NIIK T12.1L,FS NV0506
ratio4(COIN) = ratio4(M0) ;
*C Change in stock of coins
-EYMW T1.2A,FS NV0506

```
```

dCOIN = diff(COIN) ;
*C Stock of Treasury Bills
NIIV T12.1L,FS
diff(TBILLS) = 0 ;
*C Stock of National Savings
ACUA T1.1D,FS
NV1105
*W RDEPNET = RDEP(-2)*(1-TPBRZ(-3)) ;
log(NATSAV) = log(GFWPE) + log(NATSAV(-1)/GFWPE(-1))
+ 0.030757*(diff(RNS(-2)) - (RDEPNET - RDEPNET(-1)))
+ 0.068471*(ifeq(200203)-ifeq(200204))
+ 0.083433*(ifeq(199803)-ifeq(199804))
+ 0.081585*(ifeq(198704)-ifeq(198801));
*C Natl. Savings: CGNCR financing
-AACE T1.2A,FS
NV0506
dNATSAV = diff(NATSAV) ;
*C Tax certificates: CGNCR financing
ACRV T1.2A,FS
NV0506
diff(TXCERT) = 0 ;
*C CG loans from monetary and fin. institutions
HMT
-----
diff(CGOD) = 0 ;
*C CG loans from MFIs: CGNCR financing
ANTB T12.1L,FS
NV0107
dCGOD = diff(CGOD) ;
*C Other CGBR financing
-AACH-AACI-ANTC T1.2A,FS
NV0506
OCGBRF = 0 ;
*C Other external funding of the CGNCR -AACL-AACM T1.2A,FS NV0506
OXFPS = 0 ;
*C Stock of other CG assets
BKSM+BKSN Tl.1D,FS
NV0506
diff(OCGASS) = 0 ;
*C Other CG assets: CGNCR financing
ANTD+ANSZ T1.2A,FS
NV0506
dOCGASS = diff(OCGASS) ;
*C Gilt issuance in financing CGNCR
ANTA T1.2A,FS NV0506
dGILT = CGNCR - dCOIN - diff(TBILLS) - dNATSAV - diff(TXCERT)
- dCGOD - OCGBRF - OXFPS + dOCGASS - DRES ;
*C Redemptions of conventional gilts -ACOX-ACOY T1.2C,FS NV0506
REDGILT = 0 ;
*C Redemptions of index-linked gilts
HMT
NV0506
REDILGILT = 0 ;
*C Net cash nominal issues of linkers
ACOV T1.2C,FS
NV0506

```
```

dILGILT = 0.25685*(REDGILT + dGILT + REDILGILT) - REDILGILT ;
*C Stock of Index-linked gilts (nominal value) BKPL T1.1D,FS NV1105
*W RPI8 = (2/3*PR(-2) + 1/3*PR(-3))/(2/3*PR(-3) + 1/3*PR(-4)) ; {8m lag uplift}
*W RPI3 = (2/3*PR + 1/3*PR(-1))/(2/3*PR(-1) + 1/3*PR(-2)) ; {3m lag
uplift}
REVIG8 = REVIG8(-1)*RPI8 + (-REDILGILT - ILGCSH)
+ 0.25*ifle(200702)*(dILGILT + REDILGILT) ;
REVIG3 = REVIG3(-1)*RPI3 + (dILGILT + REDILGILT)*(1 - 0.25)*ifle(200702) ;
REVIG = REVIG8 + REVIG3 ;
*C Imputed GG debt from finance leases F8YF+F8YH ----- SK1006
FLEASGG = FLEASGG(-1) ;
*C Imputed PC debt from finance leases F8YJ ----- SK1006
FLEASPC = FLEASPC(-1) ;
*C Net Public Sector Debt BKQK T1.1D,FS NV1006
diff(NPSD) = PSNCR - ILGAC + diff(FLEASGG) + diff(FLEASPC) ;
*C LA liquid assets BKSO+BKQG T1.1D,FS NV0506
diff(LALIQ) = 0 ;
*C General Government Liquid Assets BKQJ-BKSQ-BKSP-AIPD T1.1D,FS NV0506
GGLIQ = OCGASS + LALIQ ;
*C General Government Gross Debt BKPX T1.1D,FS NV1006
diff(GGGD) = CGNCR + LABRO - ILGAC + diff(SRES) + diff(GGLIQ) + diff(FLEASGG) ;

```

\section*{TABLE 2: VARIABLE DESCRIPTIONS AND SOURCES}
\begin{tabular}{|c|c|c|c|c|}
\hline No. & Name & Description & Unit & Source \\
\hline 0102 & PD & Property transactions (particulars delivered) & 000s & FTAQ \\
\hline 0103 & CDUR & Consumers' expenditure on Durables, CVM & EM, CVM & UTID \\
\hline 0104 & A2029 & Numbers in Age cohort 20-29 & 000s & KABB \\
\hline 0105 & C & final Consumption expenditure: \(\mathrm{HH}+\mathrm{NPISH}, \mathrm{CVM}\) & EM, CVM & NPSP \\
\hline 0106 & CE & final Consumption expenditure: HH + NPISH, cash & EM & ABJQ+HAYE \\
\hline 0107 & CDURE & Consumers' expenditure on Durables, cash & EM & UTIB \\
\hline 0201 & INV & Inventory levels, end quarter & EM, CVM & = HMT \\
\hline 0204 & DINV & Change in inventories & EM, CVM & CAFU \\
\hline 0205 & BV & Book value of inventories, end quarter & EM & = HMT \\
\hline 0206 & SA & Stock Appreciation (inventories) & EM & DLRA+EQCB \\
\hline 0208 & DINVHH & HH change in inventories & EM & RPZX \\
\hline 0210 & CS & Real financing cost of stocks & \% & = HMT \\
\hline 0211 & DINVE & Change in inventories & EM & CAEX \\
\hline 0212 & DINVCG & CG change in inventories & EM & ANMY \\
\hline 0301 & IBUS & Business Investment & EM, CVM & NPEL \\
\hline 0302 & PCIH & PC's investment in dwellings & EM, CVM & DKQH \\
\hline 0303 & VAL & Net acquisitions of valuables, CVM & EM, CVM & NPJR \\
\hline 0304 & GGIE & General Government GFCF & EM & RNCZ+RNSM \\
\hline 0305 & IH & Private Sector investment in housing & EM, CVM & DFEA \\
\hline 0306 & GGI & General Government GFCF & EM, CVM & DLWF \\
\hline 0307 & VALE & Net acquisitions of valuables, cash & EM & NPJQ \\
\hline 0308 & IF & Total Gross Fixed Capital Formation, CVM & EM, CVM & NPQT \\
\hline 0309 & COC & Cost of Capital (private sector industry) & \% & = HMT \\
\hline 0310 & VALHH & Net acquisitions of valuables: HH & EM & RPZY \\
\hline 0311 & NPAHH & HH Net acquisition of Non-Produced non-fin. Assets & EM & RPZU \\
\hline 0312 & IFE & Total Gross Fixed Capital Formation, cash & EM & NPQS \\
\hline 0313 & IHHE & Households GFCF & EM & RPZW \\
\hline 0314 & ICCE & Private Non-Financial Companies GFCF & EM & ROAW \\
\hline 0315 & GGIDEF & General Govt Investment Deflator & Index & *0315 \\
\hline 0317 & IPRL & Other private sector investment (transfer costs) & EM, CVM & DLWI \\
\hline 0320 & FP & First year investment allowance for Plant \& machinery & \% & =HMRC \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 0321 & SP & Annual investment allowance for Plant \& machinery & \% & = HMRC \\
\hline 0322 & FIB & First year investment allowance for Industrial Buildings & \% & = HMRC \\
\hline 0323 & SIB & Annual investment allowance for Industrial Buildings & \% & = HMRC \\
\hline 0324 & SV & Rate of annual writing down allowance on vehicles & \% & = HMRC \\
\hline 0326 & GPW & Household sector Gross Physical Wealth & ¢Bn & CGRP \\
\hline 0327 & IFCE & Investment by Financial Companies & ¢M & RPYQ \\
\hline 0401 & EPS & Private Sector employment (inc. PCs) & 000s & *040I \\
\hline 0402 & ETLFS & LFS employment (inc. self -employed) & 000s & MGRZ \\
\hline 0404 & ET & UK employed labour force (WFJ) & 000s & *0404 \\
\hline 0405 & ULFS & LFS Unemployment (ILO) & 000s & MGSC \\
\hline 0406 & U & Claimant count unemployment & 000s & BCJD \\
\hline 0407 & UNUKP & Claimant count unemployment rate & \% & BCJE \\
\hline 0408 & IVB & Invalidity/Incapacity Benefit recipients & 000s & KJHB+KXDT \\
\hline 0409 & ED & F/T home students: further \& higher education & 000s & = \(\mathrm{HMT}^{\text {T }}\) \\
\hline 0410 & ES & Employers and self employed (WFJ) & 000s & DYZN(Q) \\
\hline 0411 & EOIL & Offshore oil and gas employment & 000s & CGZH(Q)/1000 \\
\hline 0412 & POP & Total population of working age (LFS) & 000s & YBTF \\
\hline 0413 & WRGTP & Work Related Govt Training Programmes & 000s & LOJU(Q) \\
\hline 0414 & WFJ & Workforce in employment (WFJ) & 000s & DYDC(Q) \\
\hline 0416 & LFSUR & LFS Unemployment Rate (ILO) & \% & MGSX \\
\hline 0501 & XNO & Exports of Non-Oil goods & EM, CVM & BQAN \\
\hline 0502 & XNOX & Exports of Non-Oil goods ex. MTIC & EM, CVM & *0502 \\
\hline 0503 & XS & Exports of Services, CVM & EM, CVM & IKBE \\
\hline 0504 & XG & Total exports of goods & EM, CVM & BQKQ \\
\hline 0505 & X & Exports of goods and services, CVM & EM, CVM & IKBK \\
\hline 0506 & MKTGS & UK export markets for goods \& services & Index & = \(\mathrm{HMT}^{\text {T }}\) \\
\hline 0507 & XE & Exports of goods and services, cash & EM & IKBH \\
\hline 0508 & XMTIC & MTIC fraud related exports, CVM & EM, CVM & *0508 \\
\hline 0509 & XMTICE & MTIC fraud related exports, cash & EM & *0509 \\
\hline 0510 & WTGS & World Trade in non-oil Goods \& Services & Index & = \(\mathrm{HMT}^{\text {T }}\) \\
\hline 0512 & RPRICE & Relative export prices & Index & CTPC \\
\hline 0601 & MNOS & Imports of Non-Oil goods and Services & EM, CVM & JTEA \\
\hline 0602 & MNOSX & Imports of Non-Oil goods and Services ex. MTIC & EM, CVM & *0602 \\
\hline 0605 & M & Imports of goods and services, CVM & EM, CVM & IKBL \\
\hline 0606 & MMTIC & MTIC fraud related imports, CVM & EM, CVM & *0606 \\
\hline 0607 & SPECX & Trend Specialisation in world trade \& ind. production & Index & = \({ }^{\text {M }}\) T \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 0608 & MMTICE & MTIC fraud related imports, cash & EM & *0608 \\
\hline 0609 & ME & Imports of goods and services, cash & EM & IKBI \\
\hline 0610 & TB & Balance of Trade in goods \& services & EM & IKBJ \\
\hline 0701 & PPIY & Producer output price index ex. taxes & Index & PVNQ \\
\hline 0702 & ADJW & Adjustment for wages \& salaries & Number & = HMT \\
\hline 0703 & PCE & Consumers' expenditure deflator & Index & *0703 \\
\hline 0704 & RPCOST & Index of Retail Price Costs & Index & = HMT \\
\hline 0705 & RROSSI & ROSSI: RPI ex. MIPs, council tax and rents & Index & GUMF \\
\hline 0706 & DUTRPI & Average rate of Duty on RROSSI & \% & = HMT \\
\hline 0707 & ICOST & Investment Costs: I-O decompostion & Index & = \(\mathrm{HMT}^{\text {T }}\) \\
\hline 0708 & PR & Retail Prices Index (RPI) & Index & CHAW (FRAG) \\
\hline 0709 & PINV & Inventories deflator & Index & \(=\mathrm{HMT}\) \\
\hline 0710 & PIF & Investment deflator (total GFCF) & Index & *0710 \\
\hline 0711 & RPTAX & Average tax rate on RROSSI & \% & = HMT \\
\hline 0712 & PRMIP & MIPs index in the RPI & Index & DOBQ \\
\hline 0713 & PRXMIP & RPI excluding MIPs & Index & CHMK \\
\hline 0714 & PXNO & AVI for exports of Non-Oil goods & Index & *0714 \\
\hline 0715 & ULCPS & Private Sector Unit Labour Costs & Index & = HMT \\
\hline 0716 & PRENT & Rent component of the RPI & Index & DOBP \\
\hline 0717 & PXS & AVI for exports of Services & Index & *0717 \\
\hline 0718 & PMNOS & AVI: imports of non-oil goods \& services & Index & *0718 \\
\hline 0719 & PMNOSX & AVI: imports of non-oil goods \& services ex. MTIC & Index & *0719 \\
\hline 0721 & CPI & Consumer Prices Index, 1996=100 & Index & D7BT \\
\hline 0724 & PSAVEI & Private Sector Average Earnings Index & Index & LNKY \\
\hline 0725 & ERCG & CG average earnings index, 2000 \(=100\) & Index & NMAI/C9K9(Q) \\
\hline 0726 & ERLA & LA average earnings index, 2000 \(=100\) & Index & NMJF/C9KA(Q) \\
\hline 0727 & PCT & Rates/Community Charge RPI & Index & DOBR \\
\hline 0731 & HRRPW & LA gross rent per house per week (\(£\)) & £ & =DCLG \\
\hline 0733 & WPG & World price of goods & Index & = \(\mathrm{HMT}^{\text {T }}\) \\
\hline 0734 & WPBM & World Price of Basic Materials (\$) & Index & = \(\mathrm{HMT}^{\text {T }}\) \\
\hline 0735 & MI4CP & Major 14 consumer prices & Index & = \({ }^{\text {MT }}\) \\
\hline 0736 & APH & Average House Price index & Index & =DCLG \\
\hline 0737 & RHF & Real interest rate on Housing Finance & \% & = HMT \\
\hline 0738 & OWC & Owner occupancy rate & \% & =DCLG \\
\hline 0739 & UDEN & Union density (constant from 1980q4) & \% & = HMT \\
\hline 0741 & TAX & Tax component of RPCOST & Index & = \(\mathrm{HMT}^{\text {T }}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 0742 & HD & Housing Depreciation index in RPI & Index & CHOO \\
\hline 0801 & TDOIL & Total domestic Demand for Oil & EM, CVM & *0801 \\
\hline 0802 & NSGVA & GVA in North Sea oil \& gas extraction & EM, CVM & UJAD \\
\hline 0803 & XOIL & Exports of Oil, CVM & EM, CVM & BOXX \\
\hline 0804 & PXOIL & AVI for exports of Oil & Index & *0804 \\
\hline 0805 & MOIL & Imports of crude Oil and oil products & EM, CVM & BPIX \\
\hline 0806 & PMOIL & AVI for imports of oil & Index & *0806 \\
\hline 0807 & NSGTP & North Sea Gross Trading Profits: PNFCs & EM & CAGD \\
\hline 0809 & PBRENT & Brent crude oil Price (\$ per barrel) & \$ & = IMF \\
\hline 0901 & CGWS & CG compensation of employees & EM & QWPS \\
\hline 0902 & PCOTC & Payable Company Tax Credits & EM & MDXH \\
\hline 0903 & CGP & CG Procurement expenditure & EM & QWPT \\
\hline 0904 & LASUBP & LA Subsidies on Products & EM & ADAK-LIUC \\
\hline 0905 & NPACG & CG Net acquisition of Non-Produced non-fin. Assets & EM & NMFG \\
\hline 0906 & CGIE & Total Central Government GFCF & EM & NMES \\
\hline 0907 & CGTSUB & CG Total subsidies & EM & NMCD \\
\hline 0908 & CGSB & CG net Social Benefits to households & EM & GZSJ \\
\hline 0909 & UPRAT & Uprating for non-cyclical social security benefits & Index & = HMT \\
\hline 0910 & DIPNSC & Debt Interest Payments on Natl Savings & EM & XACX \\
\hline 0911 & DIPLDC & Debt Interest Paid on conventional gilts & EM & CUEM-CMSU \\
\hline 0912 & DICGOP & Total CG debt interest payments & £M & NMFX \\
\hline 0913 & IILG & Debt interest on index-linked gilts & EM & CMSU \\
\hline 0914 & AEG & Aggregate External Grant: CG to LA (inc. NNDR grant) & EM & = HMT \\
\hline 0915 & LALEND & LA net lending to personal sector & EM & ADDU \\
\hline 0916 & KLA & LA capital grants & EM & NMNL \\
\hline 0917 & CGCGLA & Total CG grants to LAs' & EM & QYJR \\
\hline 0918 & LASBHH & LA Social Benefits to Households & EM & GZSK \\
\hline 0919 & KCGLA & Capital grants: CG to LA & EM & NMGR+NMGT \\
\hline 0920 & LAMISE & LA Miscellaneous Expenditure & EM & LSIB \\
\hline 0921 & ECNET & Net EC contributions (BoP basis) & EM & -FKKL-FKIJ \\
\hline 0922 & TROD & Government non-EC transfer debits & EM & *0922 \\
\hline 0923 & UPLIFT & Uprating factor for cyclical social security benefits & Index & = HMT \\
\hline 0924 & RCGIM & CG non-trading capital consumption & EM & NSRN \\
\hline 0925 & NOPENS & Number of pensioners (inc. widows) & 000s & BDAE \\
\hline 0926 & KCGPSO & Capital grants: CG to Private Sector and RoW & EM & ANNI \\
\hline 0927 & ECG & CG non-trading employment (WFJ) & 000s & CULX(Q) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 0928 & LAWS & LA compensation of employees & EM & QWRY \\
\hline 0929 & LAPR & LA expenditure on Procurement & EM & QWRZ-NMKK \\
\hline 0930 & LAlE & Investment by Local Authorities & EM & NMOA \\
\hline 0931 & DILAPR & LA interest/dividends paid to private sector \& RoW & EM & NUGW \\
\hline 0932 & PCLEB & PCs investment in Land and Existing Buildings & £M, CVM & DLWH \\
\hline 0933 & NPALA & LA Net acquisition of Non-Produced non-fin. Assets & EM & NMOD \\
\hline 0934 & ELA & LA non-trading employment (WFJ) & 000s & CUAN(Q) \\
\hline 0935 & CGSUBP & CG Subsidies on Products & £M & NMCB \\
\hline 0936 & CGSUBPR & CG Subsidies on Production & EM & NMCC \\
\hline 0937 & LASUBPR & LA Subsidies on Production & EM & LIUC \\
\hline 0938 & CGOTR & CG Other current grants & EM & NMFC \\
\hline 0939 & KID & No. of children receiving child benefit (GB) & 000s & BDAH \\
\hline 0940 & RLAIM & LA non-trading capital consumption & EM & NSRO \\
\hline 0941 & LATSUB & LA Total subsidies & EM & ADAK \\
\hline 0942 & CGMISP & CG Miscellaneous Payments & EM & ANRS-ABIF \\
\hline 0943 & DICGPC & CG debt interest payments to PCs & EM & *0943 \\
\hline 0944 & DILACG & LA debt interest payments to CG & EM & GVHA \\
\hline 0945 & DIPCCG & PC debt interest payments to CG & EM & GVHC-ZYHY \\
\hline 0946 & SLCGLA & Stock of LA debt held by CG & EM & *0946 \\
\hline 0947 & DIPCLA & PC debt interest payments to LAs & EM & GVHD-ZYHZ \\
\hline 0948 & DICGLA & CG debt interest payments to LAs & EM & NUHC \\
\hline 0949 & LASC & LA Social contributions & EM & GCMN \\
\hline 0950 & NPRIVP & Net Privatisation Proceeds & EM & -ABIF \\
\hline 0951 & LCGOS & CG net lending overseas & EM & HEUC \\
\hline 0952 & LCGPR & CG net lending to the Private Sector & EM & ANRH-HEUC \\
\hline 0953 & ILGCSH & Index-Linked Gilts Cash uplift & EM & NMRB-NMQZ \\
\hline 0954 & RLCOTC & Reduced Liability Company Tax Credits & EM & JPPT-MDXH \\
\hline 0955 & WFTCNT & WFTC scoring as Negative Tax & EM & LIBJ-MDYM \\
\hline 0956 & KPSCG & Capital grants: Private Sector to CG & EM & ANNN \\
\hline 0957 & REDOTH & Interest on gilts redeemed \& other flows & EM & = HMT \\
\hline 0958 & LAOTRHH & LA Other Transfers to HH & ¢M & EBFE \\
\hline 0959 & LANNDR & LA payments of NNDR & EM & CQOQ \\
\hline 0961 & DILAPC & LA debt interest payments to PCs & EM & CPBA \\
\hline 0962 & ILGUP & Accrued uplift on index linked gilts & EM & NMRB \\
\hline 0963 & CSS & Cyclical Social Security & EM & ABBV \\
\hline 0964 & GNLDF & Lottery financed expenditure & EM & CJSW \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 0965 & LANDRAA & LA NNDR Accruals Adjustment & EM & CULD-CCXN \\
\hline 0967 & WFTCPE & WFTC scoring as Public Expenditure & EM & LIBJ \\
\hline 0968 & ASSETSA & Fixed asset sales by Public Sector & EM & = HMT \\
\hline 0969 & EUVAT & VAT payments to the EU & EM & HCML+FSVL \\
\hline 0970 & OSGG & Gross Operating Surplus: GG & EM & NMXV \\
\hline 0971 & EESCLA & Employee contributions to LA pension schemes & EM & NMWM \\
\hline 0972 & CONACC & Accruals adj. on conventional gilts & EM & -GCSW-GCMR \\
\hline 0973 & TME & Total Managed Expenditure & EM & *0973 \\
\hline 0974 & CGASC & CG Actual Social Contributions & £M & GCMP \\
\hline 0976 & CGNCGA & CG Net Current Grants Abroad & EM & GZSI \\
\hline 0977 & CGSTOCK & CG net capital Stock, all fixed assets & £Bn & CIXK \\
\hline 0978 & LASTOCK & LA net capital Stock, all fixed assets & EBn & CIXL \\
\hline 0985 & DITHER & Other CG debt interest & £M & = HMT \\
\hline 0986 & LANCGA & LA Net Current Grants Abroad & EM & C626 \\
\hline 1001 & TSD & Stamp Duty receipts & EM & ACCI \\
\hline 1002 & TYEM & Taxes on income from employment & EM & DBBO \\
\hline 1003 & CCLACA & Climate change \& aggregates levy accruals adjustment & EM & *1003 \\
\hline 1004 & VREC & VAT Receipts & EM & EYOO \\
\hline 1005 & EXDUTAC & Excise Duty Accruals adjustments & EM & RUSD \\
\hline 1006 & TXALC & Alcohol duties: spirits, beer, wine and cider & EM & ACDF/G/H/I \\
\hline 1007 & SIBICC & Total allowances on PNFCs investment in Buildings & EM & = HMT \\
\hline 1008 & EENIC & Employees' payments of NICs & EM & AllH-CEAN \\
\hline 1009 & EMPNIC & Employers' payments of NICs & EM & CEAN \\
\hline 1010 & LL & Lower Earnings Limit for NICs (£, Q) & E & = HMT \\
\hline 1011 & UL & Upper Earnings Limit for NICs (\(£, \mathrm{Q}\)) & ¢ & = HMT \\
\hline 1012 & TCACT & Advance Corporation Tax receipts & EM & ACCN \\
\hline 1013 & NSCTP & North Sea Corporation Tax Payments & EM & DBJY \\
\hline 1014 & TXFUEL & Hydrocarbon oils duty receipts & EM & ACDD \\
\hline 1015 & NNSCTP & Non-North Sea Corporation Tax Payments & EM & *1015 \\
\hline 1016 & CAPAL & Capital Allowances due (all companies) & EM & = \({ }^{\text {M }}\) T \\
\hline 1017 & PRT & Petroleum Revenue Tax inc. advance PRT & EM & ACCJ \\
\hline 1018 & NSROY & North Sea Royalties accruals & EM & ACEC \\
\hline 1019 & OHT & Other Household Taxes on income & EM & *1019 \\
\hline 1020 & DIRCG & Debt Interest Receipts of CG & EM & *1020 \\
\hline 1021 & DIRLA & Debt Interest Receipts of LA & EM & * 1021 \\
\hline 1022 & TXTOB & Tobacco duty & £M & ACDE \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1023 & OPT & Other Production Taxes & EM & NMBX-CUKY \\
\hline 1024 & TXMIS & Misc. expenditure taxes & EM & *1024 \\
\hline 1025 & TSEOP & Taxes on Self-Employment \& Other Personal Income & EM & ZAFG \\
\hline 1026 & TCINV & Other company taxes on investment & EM & GRXE \\
\hline 1027 & INHT & Inheritance Tax & EM & NMGI \\
\hline 1028 & TXKCO & CG receipts of capital taxes on companies & EM & DKGZ \\
\hline 1029 & CC & Community Charge (Council Tax) & EM & NMIS \\
\hline 1030 & NNDRA & National Non-Domestic Rates Accruals & EM & CUKY \\
\hline 1031 & XLAVAT & VAT refunds (except to LA) & EM & CUNW \\
\hline 1032 & LAVAT & VAT refunds to LAs & 6M & CUCZ \\
\hline 1033 & CGISC & CG Imputed Social Contributions & EM & *1033 \\
\hline 1034 & KGLA & LA capital receipts from UK co. \& EU & EM & ANNO \\
\hline 1035 & DVPSCG & Dividends from Private Sector to CG & EM & ZYIA \\
\hline 1036 & NICAC & National Insurance Accruals Adjustment & EM & ACJY \\
\hline 1037 & HEENIR & Employee NICs higher rate & \% & = HMT \\
\hline 1038 & INCTAC & Income Tax Accruals Adjustment & EM & *1038 \\
\hline 1039 & ILGAC & Accruals adjustment on index linked gilts & EM & -NMQZ \\
\hline 1040 & RNCG & CG total rent receipts (ex. capital consumption) & EM & *1040 \\
\hline 1041 & LAAC & LA accruals adjustment (NSA) & EM & -ANML \\
\hline 1042 & LRB & Lower Rate Band width (\(£, \mathrm{Q}\) rate) & E & = HMT \\
\hline 1043 & BRB & Basic Rate Band width (\(£, \mathrm{Q}\) rate) & E & = \(\mathrm{HMT}^{\text {T }}\) \\
\hline 1044 & EESCCG & CG employee social contributions & EM & GITB+GVFJ \\
\hline 1045 & TPMCA & Married Couples Allowance (\(£, \mathrm{Q}\) rate) & E & = HMT \\
\hline 1046 & TPSNA & Single persons allowance (\(£, \mathrm{Q}\) rate) & ¢ & = HMT \\
\hline 1047 & TPLR & Lower rate of income tax (ratio) & \% & = \(\mathrm{HMT}^{\text {T }}\) \\
\hline 1048 & TPAG & Age allowance (avg. single \& married) & £ & = \(\mathrm{HMT}^{\text {T }}\) \\
\hline 1049 & TPBRZ & Basic rate of income tax & \% & = HMT \\
\hline 1050 & NSACT & North Sea Advanced Corporation Tax & ¢M & = HMT \\
\hline 1051 & NHNPTC & Non-household NPISH tax credits & EM & *105I \\
\hline 1052 & MFTRAN & CG Misc. Financial Transactions & EM & -ANRV \\
\hline 1053 & TCPRO & Corporation tax rate & \% & = HMT \\
\hline 1054 & WTCCTC & Working and Children's Tax Credit & EM & MDYN \\
\hline 1055 & CCACC & Community Charge Accruals adjustment & EM & -CDXW-ADDC \\
\hline 1056 & EENIR & Class I Employee NIC rate (weighted average) & \% & = \(\mathrm{HMT}^{\text {T }}\) \\
\hline 1057 & EMPNIR & Class I Employer NIC rate (weighted average) & \% & = \(\mathrm{HMT}^{\text {T }}\) \\
\hline 1058 & TVAT & VAT rate & \% & = \(\mathrm{HMT}^{\text {T }}\) \\
\hline
\end{tabular}
\begin{tabular}{lllr}
1059 & VATFACI & VAT-able durables consumption & \(\%\) \\
1060 & VATFAC2 & VAT-able non-durables consumption & \% HMRC \\
1061 & TMIRAS & MIRAS tax rate & =HMRC \\
1062 & TPHR & Higher rate of income tax & \(\%\) \\
1063 & CGNDRAA NNDR end year adjustment & \(\%\) & \(=\) HMT \\
1064 & NNDACC & NNDR accruals adjustments & \(£ M\)
\end{tabular} LNFP+CULD
\begin{tabular}{|c|c|c|c|c|}
\hline 1097 & DIVRCG & Total CG dividend receipts & EM & ZYIA+ZYHY \\
\hline 1098 & NIS & Employers' Natl Insurance Surcharge & EM & GTAY \\
\hline 1099 & SC & Supplementary Charge on North Sea profits & \% & = HMT \\
\hline 1101 & SAS & Stock of Assets & EM & * IIOI \\
\hline 1102 & SL & Stock of Liabilities & EM & * 1102 \\
\hline 1103 & SRES & Stock of total official Reserves & £M & LTEB \\
\hline 1104 & BAL & Balancing item in BoP account & EM & NYPO \\
\hline 1105 & RSL & Rate of return on Stock of Liabilities & \% & = HMT \\
\hline 1106 & RSA & Rate of return on Stock of Assets & \% & = HMT \\
\hline 1107 & CIPD & IPD credits & EM & *1107 \\
\hline 1108 & DIPD & IPD debits & EM & *1108 \\
\hline 1109 & CGCBOP & CG earnings on reserves: scoring in BoP & EM & HHCC \\
\hline 1110 & NIPD & Net inflow of IPD & EM & HBOM \\
\hline 1111 & WEQPR & World equity prices:G6+Spain, GDP weighted & Index & = HMT \\
\hline 1112 & ROLT & GDP weighted IOy interest rate: G7 \& Eurol I & \% & = HMT \\
\hline 1113 & EECOMPD & Employees Compensation due abroad & EM & IJAI \\
\hline 1114 & DRES & Changes to foreign currency reserves & EM & AIPA \\
\hline 1115 & ROSHT & GDP weighted 3m interest rate: G7 \& Euroll & \% & = HMT \\
\hline 1116 & ECUPO & Sterling/Euro exchange rate (Euros/ \(£\)) & Rate & THAP \\
\hline 1117 & RXE & Expected exchange rate & Rate & AGBG(+I) \\
\hline 1118 & MI4GDP & GDP in Eurol I+US+Japan+Canada & EM & = HMT \\
\hline 1119 & RX & Sterling effective exchange rate & Index & BK67 \\
\hline 1120 & RXD & Sterling - dollar cross rate & Rate & AUSS \\
\hline 1121 & CB & Current account Balance of Payments & EM & HBOP \\
\hline 1122 & EECOMPC & Employees Compensation from abroad & EM & IJAH \\
\hline 1123 & EUSUBP & EU Subsidies on Products & EM & FKNG \\
\hline 1124 & HHTFA & Household Transfer receipts from Abroad & EM & *II24 \\
\hline 1125 & HHTA & Household Transfer payments Abroad & EM & * I 125 \\
\hline 1126 & EUKT & Capital transfer payments from EU & EM & GTTY \\
\hline 1127 & MIKTFA & Migrants capital Transfers From Abroad & EM & FHJC \\
\hline 1128 & MIKTA & Migrants capital Transfers Abroad & EM & FLWJ \\
\hline 1129 & CGKTA & CG capital transfers abroad & EM & FLWB \\
\hline 1130 & OPSKTA & Other Private Sector capital Transfers Abroad & EM & FLWI-FLWJ \\
\hline 1131 & EUSF & Receipts from EU Social Fund & EM & H5U3 \\
\hline 1132 & NPAA & Net acquisition of Non-Produced non-fin. Assets (land) & EM & FHJL-FLWT \\
\hline 1133 & GNP4 & UK fourth resource contribution to EU & EM & HCSO+HCSM \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1134 & BENAB & Social security benefits paid abroad & EM & FLUK \\
\hline 1135 & CGITFA & CG tax receipts from abroad & EM & CGDN \\
\hline 1136 & ITA & Tax payments abroad & EM & FLVE \\
\hline 1137 & EUSUBPR & EU Subsidies on Production & EM & FHLK (ZJZD) \\
\hline 1138 & TRANC & Transfer Credits & EM & IKBN \\
\hline 1139 & TRAND & Transfer Debits & EM & IKBO \\
\hline 1140 & TRANB & Transfers Balance & EM & IKBP \\
\hline 1141 & INSURE & Non-life insurance premiums \& claims & EM & NHRX+FLYE \\
\hline 1142 & CB\% & Current account Balance of Payments, \% GDP & \% & AA6H \\
\hline 1143 & NAFROW & Net lending by Rest of the World & EM & RQCH \\
\hline 1201 & KPSPC & PC capital transfers from the Private Sector & EM & ADSE \\
\hline 1202 & IPCE & Investment by Public Corporations & EM & ANNQ \\
\hline 1203 & IBPC & PC increase in stocks & EM & DHHL \\
\hline 1204 & OSPC & Gross Operating Surplus: PC & EM & NRJT \\
\hline 1205 & MFTPC & PC Misc. Financial Transactions & EM & ANVU \\
\hline 1206 & DIPRPC & PC interest receipts from Private Sector & EM & GVHG \\
\hline 1207 & KGLAPC & Capital grants: LA to PC & EM & ADCF \\
\hline 1208 & DVPCLA & PC dividend payments to LA & EM & ZYHZ \\
\hline 1209 & KCGPC & Capital grants: CG to PC & EM & *1209 \\
\hline 1211 & DIRPC & Debt Interest Receipts of PC & EM & GVHH \\
\hline 1212 & DIPCOP & PC debt interest payments to RoW \& Priv. Sector & EM & GZSO \\
\hline 1213 & DVPCCG & PC dividend payments to CG & EM & ZYHY \\
\hline 1214 & PUBSTPD & Public Sector taxes: Production \& imports & EM & NMYE \\
\hline 1215 & TYPCO & PC onshore corporation tax payments & EM & FCCS \\
\hline 1217 & PFTC & Pension Fund Tax Credits & EM & -CFGS \\
\hline 1218 & FCACA & Financial Companies Accruals Adj. & EM & DKHH+ZYBE \\
\hline 1219 & PCCON & Total PC capital consumption & EM & NSRM \\
\hline 1220 & KPCPS & Capital grants: PCs to the Private Sector & EM & ZMML \\
\hline 1222 & PCSTOCK & PC net capital Stock, all fixed assets & EM & CIXJ \\
\hline 1223 & CGNB & CG Net Borrowing & EM & -NMFJ \\
\hline 1225 & CGACADJ & CG Accruals adjustments & EM & *1225 \\
\hline 1226 & LANB & Local Authority Net Borrowing & EM & -NMOE \\
\hline 1227 & TDEF & GG net borrowing: Maastrict definition & EM & -MDUK \\
\hline 1228 & PSCR & Public Sector Current Receipts & EM & ANBT \\
\hline 1229 & PSCE & Public Sector Current Expenditure & EM & ANLT \\
\hline 1230 & PSCB & Public Sector Current Budget & EM & ANMU \\
\hline & & 59 & & ersion Mar'08 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1231 & PSGI & Public Sector Gross Investment & EM & = HMT \\
\hline 1232 & DEP & Public Sector Depreciation & EM & ANNZ \\
\hline 1233 & PSNI & Public Sector Net Investment & EM & -ANNW \\
\hline 1234 & PSLSFA & Public Sector Loans \& Sales of Financial Assets & £M & ANSU+ANSV \\
\hline 1235 & PSACADJ & Public Sector Accruals Adjustments & EM & *1235 \\
\hline 1236 & PSNW & Public Sector Net Wealth & EM & CGTY \\
\hline 1237 & PUBSTIW & Public Sector taxes: Income \& Wealth & EM & ANSO \\
\hline 1238 & PSTA & Public Sector Tangible Assets & EM & CGJA \\
\hline 1239 & PSFA & Public Sector Financial Assets & EM & NKFB+NPUP \\
\hline 1240 & CGGILTS & Stock of CG gilts excluding linkers & EM & NIJI-V2027 \\
\hline 1241 & OFLPS & Other Public Sector Financial Liabilities & EM & *1241 \\
\hline 1242 & PSFL & Public Sector Financial Liabilities & EM & NKIF+NPVQ \\
\hline 1243 & LARENT & LA Rent receipts \& current transfers & EM & ANBX \\
\hline 1244 & PCRENT & PC rent receipts \& current transfers & EM & ANCW \\
\hline 1245 & PCLEND & PC net lending to private sector \& RoW & EM & ANRY \\
\hline 1246 & PCMISE & PC net acquisition of UK co. securities & EM & ANRZ \\
\hline 1247 & PCAC & PC Accounts receivable/payable & EM & ANVQ \\
\hline 1248 & PCGILT & PC adjustment for interest on gilts & EM & NCXS \\
\hline 1249 & LAMFT & LA Misc. Financial Transactions & EM & ANMW \\
\hline 1250 & CGACRES & CG Accounts residual & EM & *1250 \\
\hline 1251 & MKTIG & Market value of index-linked gilts & EM & = \(\mathrm{HMT}^{\text {T }}\) \\
\hline 1252 & CGLSFA & CG Loans \& Sales of Financial Assets & EM & ANRH+ANRS \\
\hline 1253 & CGRENT & CG Rent \& other current transfers & ¢M & ANBU \\
\hline 1254 & CGNDIV & CG interest \& dividends from Private sector \& RoW & EM & GVHE \\
\hline 1255 & LANDIV & LA interest \& dividends from Private sector \& RoW & EM & GVHF \\
\hline 1256 & PCNDIV & PC interest \& dividends from Private sector \& RoW & EM & GVHG \\
\hline 1257 & PSINTR & Public Sector interest \& dividend receipts & EM & ANBQ \\
\hline 1258 & CGINTRA & CG net interest \& dividends from Public Sector & EM & ANNY \\
\hline 1259 & LAINTRA & LA net interest \& dividends from Public Sector & EM & ANPZ \\
\hline 1260 & PCINTRA & PC net interest \& dividends from Public Sector & EM & ANRW \\
\hline 1401 & RS & UK interbank rate: 3 m LIBOR & EM & AMIJ \\
\hline 1402 & RL & UK twenty year gilt yield & \% & AJLX \\
\hline 1403 & RDEP & Building Society deposit rate & \% & AJNV \\
\hline 1404 & RNS & Rate of return on National Savings & \% & XACX/ACUA \\
\hline 1405 & RMORT & Building Soc. mortgage rate (repayment) & \% & AJNL \\
\hline 1406 & EQPR & Equity price index, (FT all-share) & Index & HSEL \\
\hline
\end{tabular}
\begin{tabular}{lllr}
1407 & RILG & Real interest rate on Index-Linked Gilts & \(\%\) \\
1408 & MO & Notes \& coins in circulation outside BoE & =HMT \\
1409 & NFWPE & Household sector Net Financial Wealth & AVAB \\
1410 & M4 & M4 (end period), (FYSA) & \(£ M\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1527 & TYWHH & HH current taxes on income and wealth & EM & RPHS+RPHT \\
\hline 1528 & PIRHH & Property Income Receipts of HH & EM & ROYL \\
\hline 1529 & PIPHH & Property Income Payments of HH & EM & ROYT \\
\hline 1530 & OSB & HH private funded social benefits (pensions) & EM & RNLL \\
\hline 1531 & NPISHTC & NPISH tax credits & EM & -CFGW \\
\hline 1532 & HHSB & Household Social Benefits & EM & RPIA \\
\hline 1533 & HHISC & Household imputed Social Contributions & EM & RVFH \\
\hline 1534 & EECPP & Employees pension contributions & EM & RNNN \\
\hline 1540 & SY & Households' saving ratio & \% & NRJS \\
\hline 1601 & BPA & Basic Price Adjustment, CVM & EM, CVM & NTAO \\
\hline 1602 & TFE & Total Final Expenditure, CVM & EM, CVM & ABMG \\
\hline 1603 & GDPM & GDP at market prices, CVM & EM, CVM & ABMI \\
\hline 1604 & GVA & GVA at basic prices, CVM & EM, CVM & ABMM \\
\hline 1605 & GVAE & GVA at basic prices, cash & EM & ABML \\
\hline 1606 & PGVA & Gross Value Added deflator & Index & CGBV \\
\hline 1607 & GDPME & GDP at market prices, cash & EM & YBHA \\
\hline 1608 & TFEE & Total Final Expenditure, cash & EM & ABMF \\
\hline 1609 & BPAE & Basic Price Adjustment, cash & EM & YBHA-ABML \\
\hline 1610 & PGDP & GDP at market prices deflator & Index & YBGB \\
\hline 1611 & NNSGVA & Non-North sea GVA, CVM & EM, CVM & UIZY \\
\hline 1612 & MANGVA & Manufacturing GVA & EM, CVM & CKYY \\
\hline 1613 & TPRODE & Taxes less subsidies on Production, cash & EM & CMVL-NTAP \\
\hline 1614 & GDPI & GDP Income measure at market prices & EM & YBHA \\
\hline 1615 & CBIBC & CBI spare capacity indicator & Index & DKCE \\
\hline 1617 & OSHH & Gross Operating Surplus: HH & EM & CAEN \\
\hline 1618 & FYCPR & Gross trading profits of all companies & EM, CVM & *1618 \\
\hline 1619 & SDE & Statistical discrepancy: GDP (E) & EM, CVM & GIXS \\
\hline 1620 & OS & Gross Operating Surplus & EM, CVM & ABNG \\
\hline 1621 & TPROD & Taxes less subsidies on Production, CVM & EM, CVM & NTAI \\
\hline 1622 & MGDPNSA & GDP at market prices (NSA) & EM & BKTL \\
\hline 1623 & CGG & General Government final consumption, CVM & EM, CVM & NMRY \\
\hline 1624 & CGGE & General Government final consumption, cash & EM & NMRP \\
\hline 1625 & RENTCO & Private Sector companies rental income & EM & DTWS+FCBW \\
\hline 1626 & SDEf & Statistical discrepancy: GDP (E) & EM & GIXM \\
\hline 1627 & SDI & Statistical discrepancy: GDP (I) & EM & GIXQ \\
\hline 1629 & GGFCD & GG Final Consumption Deflator & Index & *1629 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1630 & NOPROD & Non-Oil Productivity & Index & = \(\mathrm{HMT}^{\text {T }}\) \\
\hline 1631 & BCCCU & British Chambers of Commerce Capacity Utilisation & Index & = BCC \\
\hline 1632 & GNIE & Gross National Income & EM & ABMZ \\
\hline 1633 & GFC & Gross domestic product at Factor Cost & EM, CVM & YBHH \\
\hline 1634 & TFEX & Total Final Expenditure ex. MTIC, CVM & EM, CVM & = \(\mathrm{HMT}^{\text {T }}\) \\
\hline 1635 & TFEXE & Total Final Expenditure ex. MTIC, cash & EM & = HMT \\
\hline 2001 & LABRO & LA market borrowing net CG/PC debt & EM & AAZK \\
\hline 2002 & LCGLA & Net lending by CG to LAs (NSA) & EM & ABEC \\
\hline 2003 & SLAB & Stock of LA market borrowing(NSA) & EM & *2003 \\
\hline 2004 & SLAM & Stock of LA monetary assets (NSA) & EM & ADNA-ADNJ \\
\hline 2005 & SLAPO & Private Sector debt held by LAs (NSA) & EM & *2005 \\
\hline 2006 & LCGPC & Net lending by CG to PCs (NSA) & EM & ABEI \\
\hline 2007 & SPCBCG & Stock of PC debt held by CG & EM & AKSG \\
\hline 2008 & SLCGPR & Stock of CG net lending to Private Sector & EM & *2008 \\
\hline 2009 & PCNB & Public Corporations Net Borrowing (NSA) & EM & -CPCM \\
\hline 2010 & PCBRO & PC market borrowing net CG/PC debt & EM & AAZL \\
\hline 2011 & COIN & Notes and coins, end quarter & EM & NIIK \\
\hline 2012 & FLOATER & Stock of floating rate gilts & EM & =HMT \\
\hline 2013 & CGNCR & CG Net Cash Requirement (NSA) & EM & RUUW \\
\hline 2014 & PSNCR & Public Sector Net Cash Requirement (FYSA) & EM & RURQ \\
\hline 2015 & CGOD & CG loans from monetary \& financial institutions & EM & ANTB \\
\hline 2016 & TXCERT & Tax certificates & EM & ACRV \\
\hline 2017 & OXFPS & Other external funding of the PSBR & ¢M & -AACL-AACM \\
\hline 2018 & REDGILT & Redemptions of conventional gilts & EM & -ACOX-ACOY \\
\hline 2019 & OCGBRF & Other CGBR financing & \(E M\) & *2019 \\
\hline 2020 & IDBILL & Issue Dept holdings of Commercial Bills & EM & = HMT \\
\hline 2021 & dILGILT & Net cash nominal issues of linkers & EM & ACOV \\
\hline 2022 & NATSAV & Stock of National Savings & EM & ACUA \\
\hline 2023 & dGILT & Total net purchases of gilts (all sectors) & EM & ANTA \\
\hline 2024 & OCGASS & Other CG Assets & EM & BKSM+BKSN \\
\hline 2025 & TBILLS & Stock of Treasury Bills & EM & NIIV \\
\hline 2026 & PSNBNSA & Public Sector Net Borrowing (NSA) & EM & -ANNX \\
\hline 2027 & REVIG & Stock of linkers (inc. revaluations) & EM & BKPL \\
\hline 2028 & GGNB & General Government Net Borrowing & EM & -NNBK \\
\hline 2029 & NPSD & Net Public Sector Debt & EM & BKQK \\
\hline 2030 & PSNBCY & Public Sector Net Borrowing (CYSA) & EM & -RQBN-RPZD \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 2031 & GGLIQ & General Government Liquid Assets & £M & *2031 \\
\hline 2032 & GGGD & General Government Gross Debt & £M & BKPX \\
\hline 2033 & LALIQ & LA Liquid Assets & EM & BKSO+BKQG \\
\hline 2034 & dNATSAV & CGNCR financing: Natl Savings & EM & -AACE \\
\hline 2035 & dOCGASS & CGNCR financing: Other CG assets & EM & ANTD+ANSZ \\
\hline 2036 & dCOIN & CGNCR financing: Coin & EM & -EYMW \\
\hline 2037 & REVIG3 & Stock of 3m linkers (inc. revaluations) & EM & = HMT \\
\hline 2038 & REVIG8 & Stock of 8 m linkers (inc. revaluations) & EM & = \(\mathrm{HMT}^{\text {T }}\) \\
\hline 2039 & FLEASGG & Imputed GG debt from finance leases & EM & F8YF+F8YH \\
\hline 2040 & FLEASPC & Imputed PC debt from finance leases & EM & F8YJ \\
\hline 2041 & dCGOD & CGNCR financing: CG loans from MFls & EM & ANTB \\
\hline 2042 & REDILGILT & Redemptions of index-linked gilts & EM & = HMT \\
\hline 6001 & CETAX & Customs \& Excise Taxes & EM & ACAC \\
\hline 6002 & TXCUS & Misc. Customs and Excise taxes & EM & *6002 \\
\hline 6003 & AL & Aggregates Levy & EM & MDUP \\
\hline 6004 & CCL & Climate Change Levy & EM & LSNS \\
\hline 6005 & OFGEM & Tax levied by OFGEM & EM & E02E \\
\hline 6006 & SENIR & Self-Employed class 4 NIC Rate & \% & = HM T \\
\hline 6007 & RFP & Rail franchise premia & \% & LITT \\
\hline
\end{tabular}

\section*{NOTES ON VARIABLE DESCRIPTIONS AND SOURCES}

Where a variable name ends in \(£\) e.g. \(C £\) this indicates that the variable is a measure in current prices i.e. cash, alternatively if a variable name does not end in \(£\) it may be a volume measure. The UK National Accounts are chain-linked and hence constant price measures are Chain-VolumeMeasures (CVM). Abbreviations used in variable descriptions and sources include the following:
\begin{tabular}{llll}
HH & Households & GG & General Government (CG+LA) \\
NPISH & Non-Profit Institutions Serving HH & CG & Central Government \\
PNFC & Private Non-Financial Corporations & LA & Local Authorities \\
FINCOs & Financial Corporations & PC & Public Corporations \\
GDP & Gross Domestic Product & NNDR & National Non-Domestic Rates \\
GVA & Gross Value Added & HMT & Her Majesty's Treasury \\
GFCF & Gross Fixed Capital Formation & IR & Inland Revenue \\
IPD & Interest, Profits and Dividends & C\&E & Customs and Excise \\
RPI & Retail Prices Index & ONS & Office for National Statistics \\
MIPs & Mortgage Interest Payments & BoE & Bank of England \\
UVI & Unit Value Index & LFS & Labour Force Survey \\
CT & Corporation Tax & BCC & British Chambers of Commerce \\
ACT & Advanced Corporation Tax & CBI & Confederation of British Industry \\
VAT & Value-Added Tax & EU & European Union \\
WFTC & Working Families Tax Credit & CAP & Common Agricultural Policy \\
NIC & National Insurance Contributions & LFS & Labour Force Survey \\
MIRAS & Mortgage Interest Relief At Source & NSA & Non Seasonally Adjusted \\
VED & Vehicle Excise Duty & CYSA & Calendar Year Seasonally Adjusted \\
PRT & Petroleum Revenue Tax & FYSA & Financial Year Seasonally Adjusted
\end{tabular}

\section*{ONS IDENTIFIERS}

The workforce jobs data compiled by the ONS are drawn from a survey in March, June, September and December, hence the figure published for QI strictly refers to March only. These data can be interpolated to provide better quarterly estimates so that Q 2 for example is calculated as \(2 / 3\) the published figure for Q2 (June) plus I/3 the published figure for QI (March). Where data have been transformed in this way it is indicated by the letter Q in parenthesis e.g. DYDC (Q). Where data are multiplied by a constant, for example to produce an index, the letter K is used to indicate the use of any constant with further detail provided in the variable listing. If a second identifier is listed in brackets this indicates an alternative source for the data that typically covers earlier time periods.
\begin{tabular}{|c|c|c|}
\hline 719 & PMNOSX & ((IKBI-ENXO)- (IKBI-IKBC-BQHQ*I000))/(JTEA-(IKBL-IKBF-BQHS*I000)) \\
\hline 1250 & CGACRES & \begin{tabular}{l}
ANRT-(RUSD+ACJY+(CYNX+RUTC+DKHE+DBKE)+(LNFP+CULD)
BKTC+(DKHH+ZYBE) \()\) \\
BKTC+(DKHH+ZYBE))
\end{tabular} \\
\hline 401 & EPS & DYDC(Q)-LOJU(Q)-CGZH(Q)/I000-CULX(Q)-CUAN(Q) \\
\hline 404 & ET & DYDC(Q)-LOJU(Q) \\
\hline 1019 & OHT & NSNP+NSFA+CQTC \\
\hline 1020 & DIRCG & GVHA+GVHC+GVHE-ZYHY-ZYIA \\
\hline
\end{tabular}

1024 TXMIS
1064 NNDACC
IIOI SAS
1107 CIPD
2003 SLAB
6002 TXCUS
509 XMTICE
606 MMTIC
608 MMTICE
508 XMTIC
1108 DIPD
315 GGIDEF
703 PCE
714 PXNO
718 PMNOS
922 TROD
1015 NNSCTP
1021 DIRLA
1102 SL
1241 OFLPS
1519 KGHH
2008 SLCGPR
2031 GGLIQ
1038 INCTAC
1125 HHTA
2019 OCGBRF
710 PIF
717 PXS
804 PXOIL
806 PMOIL
1051 NHNPTC
1209 KCGPC
1235 PSACADJ
1629 GGFCD
801 TDOIL
943 DICGPC

CUKY+CQOQ+CQTC-CEIP-LNFO
HBQA-HCFQ-NLDA-HFBB-LTEB
HBOK-(CGGT-HCAT)-HCEH-HHCC
ADKA-ADKE-ADKF+ADHA-ADHC
ACAC-EYOO-ACDD-ACDE-ACDF-ACDG-ACDH-ACDI-ADET-LSNS-MDUP IKBH-IKBB-(BQHP*IOOO)
IKBL-IKBF-(BQHS*I000)
IKBI-IKBC-(BQHQ*IOOO)
BQKQ-(BQHR*I000)
HBOL-HCEH-(CGGT-HCAT) 100*(RNCZ+RNSM)/DLWF 100*(ABJQ+HAYE)/NPSP 100*(BOKG-ELBL)/BQAN

100*(IKBI-ENXO)/JTEA FJUO-FJCK-HCSO-HCSM ACCD-ACCN-DBBD-DKGZ

NUHC+GVHD+GVHF-ZYHZ HBQB-HFBB-HCFQ-NLDA NKIF+NPVQ-NIJI-ACUR RPVO+RPVP-RPVS-RVPT RCPH+RDZU+READ+RMAT BKQJ-BKSQ+BKSP-AIPD CYNX+RUTC+DKHE+DBKE CGDS-FLVY-FHLS-FLVE
-AACH-AACI-ANTC 100*(NPQS/NPQT)

100*(IKBB/IKBE)
100*(ELBL/BOXX)
100*(ENXO/BPIX)
CFGW-MDYW-MDYU
-ANND-NMGR-NMGT
ANSW+ANSX+ANSY
100*(NMRP/NMRY)
UJAD+BPIX-BOXX
GVHH-CPBA-GVHG

946 SLCGLA
ADHC+ADKF+ADKE
973 TME
1003 CCLACA
1033 CGISC
1040 RNCG
1070 MILAPME
107I VTRCS
1075 CT
1124 HHTFA
1225 CGACADJ
1618 FYCPR
2005 SLAPO

ANLT+ANNZ-ANNW LNSU+MDUR+CJRY
GCSG+GCSH+RUDY NMCK-ACEC-BKTK
DCHG+DCHF+GCJJ IQKI+BKSG+BKSH

ACCD-MDXH+JPPT
CGDO-NHRX-FLYE
ANRT+ANRU+ANRV
CAGD+CAED+RITQ
ADNJ+APEN+RDLA

\section*{GROUP ONE: CONSUMPTION}

The consumption sector of the model includes only one major behavioural equation - for household sector consumption at constant prices, C. The theory underlying the equation is within the spirit of the permanent income/life cycle model, with income and wealth being the major driving variables. There is also an equation for household sector consumption of durables at constant prices, CDUR, which is used as a tax determinant, that is specified as a share of aggregate consumption.
\begin{tabular}{lllcr}
\hline No. Name & Description & Unit & Source & Identifier \\
\hline 0102 PD & Property transactions & 000 s & ONS & FTAQ
\end{tabular}

Model equation: Behavioural Equation
\[
\begin{aligned}
& \operatorname{Ln} \text { PD }=-7.409+0.715 \mathrm{gLn} \text { PD }+0.264 \mathrm{gLn} \text { RHHDI }-0.276 \mathrm{~g} \mathrm{Ln}(\mathrm{APH} / \mathrm{PCE}) \\
& \text { (2.5)[4.0] (-) (2.2)[3.0] (3.3)[4.I] } \\
& -0.00237 \mathrm{~g} \text { [RMORT - } 400(\mathrm{I}-\mathrm{g}) \mathrm{Ln} \text { APH] }-0.0108 \mathrm{~g}(\text { RS }- \text { RMORT }) \\
& \text { (-) } \\
& \text { (2.2)[3.2] } \\
& \begin{array}{l}
+0.665 \mathrm{~g} \operatorname{LnA} 2029-0.124 \mathrm{D} 7423+0.261 \mathrm{D} 8834 \\
\begin{array}{ccc}
(1.9)[3.5] & (3.3)[15] & (4.8)[24]
\end{array}
\end{array}
\end{aligned}
\]

T-statistics in square brackets were calculated using Newey-West standard errors.
Estimation period: 197 IQ to 199 IQ 3
\(R^{2}=0.429\)
SE \(=0.0506\)
\(\operatorname{LM} F(4,68)=0.1\)
\(\operatorname{ARCH} F(4,68)=1.7\)

Normality \(\mathrm{CHI}^{2}=1.1\)
Hetero \(\mathrm{F}(\mathrm{I}, 8 \mathrm{I})=0.9\)
Forecast \(F(8,64)=1.1\)
- over 1989Q4 - 199IQ3

\section*{Summary of Equation Properties}

Static long-run solution:
\(\operatorname{Ln}\) PD \(=-25.996+0.9263 \mathrm{Ln}\) RHHDI - 0.9684 Ln (APH/PCE)
\[
\text { - } 0.00832 \text { (RMORT - } 400(\mathrm{I}-\mathrm{g}) \text { Ln APH) }-0.0379 \text { (RS - RMORT) + } 2.33 \text { LnA2029 }
\]

Effect on PD of a I\% increase in:
\begin{tabular}{lrrrr}
& Q1 & Q5 & Q9 & Long-run \\
Real Personal Disposable Income (Ln RPDI) & 0.000 & 0.684 & 0.863 & 0.926 \\
Real House Prices [Ln (APH/PCE)] & 0.000 & -0.715 & -0.902 & -0.968 \\
Housing Costs (RMORT - 400g (I-g) APH) & 0.000 & -0.006 & -0.008 & -0.008 \\
No of people aged 20-29 (Ln A2029) & 0.000 & 1.724 & 2.174 & 2.333
\end{tabular}

\section*{Comment}

The equation for particulars delivered (housing turnover) is based on the assumption that turnover is negatively related to the difference between actual and expected house prices.

Expected house prices are assumed to be determined by the user cost of housing, consumer prices and real disposable income. The equation also contains a demographic term, the number of people aged 20-29. This has two possible interpretations: either it enters the relation for expected house prices; or it simply represents the greater mobility of individuals in the age cohort (which need not necessarily affect expected house prices).

The effects of financial liberalisation on turnover were modelled by the introduction of the spread between the three month interbank rate and the mortgage rate (interbank rates in excess of the mortgage rate indicate excess demand) and by allowing the coefficients in the equation to change discretely. The only coefficient subject to discrete change in the Model equation was that on the user cost of housing. In fact before 1980 we failed to identify any effect from the user cost term.

Further Documentation: MRG (93) 3
\begin{tabular}{lllllr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 0103 & CDUR & Consumers' expenditure on Durables & \(£ M\), CVM & ONS & UTID
\end{tabular}

Model equation: Behavioural Equation
\[
\begin{align*}
& \text { CDUR }=C[-0.193+0.6 I 832 \mathrm{~g}(C D U R / C)+0.015483 \mathrm{~g} \mathrm{Ln} \mathrm{RHHDI}+0.008932 \mathrm{~g} \mathrm{Ln} \mathrm{PD} \tag{3.3}\\
& \text { (-) } \tag{9.1}\\
& +0.049 \mathrm{I} 24\left(\mathrm{I}-\mathrm{g}^{2}\right) \mathrm{Ln} \text { RHHDI }+0.007 \mathrm{D} 73 \mathrm{I} 2+0.004 \mathrm{D} 7834+0.0 \mathrm{I} 6 \text { D7923] } \tag{4.4}
\end{align*}
\]

Estimation period: I968Q4 to I997Q4
\(\mathrm{R}^{2}=0.960 \quad\) Normality \(\mathrm{CHI}_{2}{ }_{2}=0.3\)
\(\mathrm{SE}=0.002 \quad\) Hetero \(\mathrm{CHI}^{2}{ }_{1}=2.8\)
\(\operatorname{LMF}(4,92)=1.7\)
ARCH F \((4,68)=1.7\)

\section*{Summary of Equation Properties}

Static long-run solution:
CDUR \(=\mathrm{C} *[0.0406 \mathrm{Ln} \mathrm{RHHDI}+0.0234 \mathrm{Ln}\) PD]
Effect on (CDUR/C) of a \(1 \%\) increase in:
\begin{tabular}{lrrrrr}
& Q1 & Q5 & Q9 & Q13 & Long-run \\
Real household income (Ln RHHDI) & 0.0500 & 0.0530 & 0.0420 & 0.0406 & 0.0406 \\
Particulars Delivered (Ln PD) & 0.0000 & 0.0190 & 0.0230 & 0.0230 & 0.0234
\end{tabular}
\begin{tabular}{llllrr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 0104 & A2029 & Numbers in Age cohort 20-29 & 000s & ONS & KABB
\end{tabular}

Model equation: Exogenous variable
\begin{tabular}{lllcrr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 0105 C & Household + NPISH expenditure & \(£ M\), CVM & ONS & NPSP
\end{tabular}

Model equation: Behavioural Equation
```

$\operatorname{Ln} C=g \operatorname{Ln} C-0.129 \mathrm{~g} \operatorname{Ln}(\mathrm{C} / R L Y)+0.005 \mathrm{I} \mathrm{g} \operatorname{Ln}(100 \mathrm{NFWPE} /(\mathrm{PCE} R L Y))$
$\left.+\underset{(4.19}{(0.089 \mathrm{~g}}-\mathbf{- 0 . 1 3 8 \mathrm { g } ^ { 2 }}\right)(\mathrm{I}-\mathrm{g}) \mathrm{Ln}$ RHHDI $+0.013403-0.10 \mathrm{I} \mathrm{g}(\mathrm{I}-\mathrm{g}) \mathrm{Ln} \mathrm{C}$

$$
\begin{equation*}
\text { + 0.142 (I-g) Ln (GPW/PCE) - } 0.0084(\mathrm{I}-\mathrm{g}) \text { UNUKP - 0.0007(I-g) RS } \tag{4.2}
\end{equation*}
$$

$$
\text { + 0.040 DD792-0.22g(I-g) (MORT/HHDI) +.0003 TI -. } 000 \mathrm{I} 07 \mathrm{~T} 2
$$

```
RLY \(=\quad 100 *(C G O T R-G N P 4-C G T P C ~+~ M I ~+~ F Y E M P ~+~ E E C O M P C ~-~ E E C O M P D ~-~ E M P S C-~\)
 EESC + SBHH - TYHH) / PCE
MORT \(=100 *\) LHP y (RHF) \(/\) PCE
```

Estimation period: I972QI to 2002Q4
$\mathrm{R}^{2}=0.66$
Normality $\mathrm{CHI}_{2}{ }_{2}=4.7$
SE $=0.007 \mathrm{I}$
Hetero F $(1,122)=0.13$
LM F $(4,106)=2.1$

## Summary of Equation Properties

Static long-run solution:
$\operatorname{Ln} \mathrm{C}=0.957 \mathrm{Ln}$ RLY $+0.043 \mathrm{Ln}(\mathrm{NFWPE} / \mathrm{PCE})$
Elasticity of C with respect to a I\% increase in:

	Q1	Q5	Q9	Q13	Long-run
Real labour income (LnRLY)	0.00000	0.38000	0.60200	0.74000	0.95700
Real financial wealth [Ln(NFWPE/PCE)]	0.00000	0.01730	0.02700	0.03400	0.04300
Real housing wealth [Ln(GPW/PCE)]	0.14160	0.07600	0.04100	0.02800	0.00000
Nominal interest rate (RS) *	-0.00070	-0.00039	-0.00020	-0.00010	0.00000
RPDI (Ln RHHDI)	0.19450	0.06372	0.03460	0.02240	0.00000
Unemployment rate (UNUKP)	-0.00840	-0.00451	-0.00270	-0.00170	0.00000
Real value of mortgages (MORT)	0.00000	-0.13400	-0.08200	-0.05100	0.00000
* Semi-elasticity					

## Comment

The aggregate equation for personal sector consumption is the major equation of this sector of the model. The major explanatory variables in the aggregate equation are real disposable labour income and real financial wealth, representing current and (expected) lifetime resources. Longrun homogeneity with respect to real labour income and wealth is imposed. In addition there are short run dynamic effects from real disposable income, short interest rates, real mortgage payments and unemployment (capturing confidence effects or the precautionary motive to save). The terms in real disposable income and real mortgage payments allow differential marginal propensities to consume out of non-labour income. The short rate term may reflect the cost of
borrowing or short run credit-rationing effects. The dummy variables $t$ l and t 2 (a split time trend) crudely attempts to capture the effects of financial deregulation and the increase in precautionary saving associated with the recession of the early 1990s.

## Further Documentation:

GES Working Paper No. I22, GES Working Paper No. I23, OMPG (94)9, MSG(95)7

No.	Name	Description	Unit	Source	Identifier
0106	$C €$	Household + NPISH expenditure	$£ M$	ONS	ABJQ+HAYE

Model equation: Technical Relationship (identity)
$C E=0.01 * C * P C E$

No.	Name	Description	Unit	Source	Identifier
0107	CDUR£	HH consumption: durable goods	$£ M$	ONS	UTIB

Model equation: Technical Relationship
$\operatorname{ratio}(C D U R £)=\operatorname{ratio}(C £)$

## GROUP TWO: INVENTORIES

The theory underlying the specification of the behavioural inventory equation is based on the notion that firms hold inventories in order to reduce the risk of stock-out and its associated costs. Firms' optimisation decisions are assumed to involve them in holding that level of stocks at which the marginal financing and physical storage costs just balance the gain from the expected marginal reduction in stock-out costs. The specification for empirical implementation contains terms to proxy expected product demand and the financing costs of stockholding.

No.	Name	Description	Unit	Source	Identifier
0201	INV	Inventory levels, end quarter	$£ M$, CVM	HMT	-

Inventory levels are constructed by taking the latest published estimate of the level of inventories and then cumulating the change in inventories (DINV).

## Model equation: Behavioural Equation

$$
\begin{align*}
& \operatorname{Ln} \operatorname{INV}=(1-0.13 I) \mathrm{g} \operatorname{Ln}(\mathrm{INV} / \mathrm{GVA})-0.00036 \mathrm{~g}^{2} \mathrm{CS}+0.246(\mathrm{I}-\mathrm{g}) \mathrm{Ln} \text { GVA }  \tag{5.1}\\
& +0.00 \mathrm{II}-0.000435 \text { TREND }_{80}+0.4 \mathrm{I} 2 \mathrm{~g}(\mathrm{I}-\mathrm{g}) \mathrm{Ln} \text { INV }
\end{align*}
$$

Estimation period: I970QI - I998Q2
$\mathrm{R}^{2}=0.77$
LM F(4, I04) $=1.95$
SE $=0.0066$
Normality $\mathrm{CHI}^{2}{ }_{2}=0.9$
DW $=2.2$
Hetero $\mathrm{F}(\mathrm{I}, \mathrm{II} 2)=0.09$

## Summary of Equation Properties

Static long-run solution:
Ln INV= Ln GVA-0.0028CS - 0.0033 TREND 80
Effect on INV of a I\% increase in:

	Q1	Q5	Q9	Long-run
Output (GVA)	0.2460	0.8020	0.9900	1.0000
Cost of stocks (CS )	0.0000	-0.0010	-0.0020	-0.0028

## Comment

Expected sales are proxied by terms gross value added. A time trend is included from 1980 to allow for the reduction in the stock-output ratio due to improved methods of stock control. The cost of stocks term used in estimation incorporates forward-looking price expectations.

Further Documentation: MSG (95)5, MSG(96) I I
No. Name Description Unit Source Identifier

Model equation: Technical Relationship (identity)
DINV $=(I-g)$ INV

No.	Name	Description	Unit	Source	Identifier
0205	BV	Book value of inventories, end quarter	$£ M$, CVM	HMT	

Model equation: Technical Relationship (identity)
$\mathrm{BV}=\quad 0.01 * \mathrm{PINV} * \operatorname{INV}$

No.	Name	Description	Unit	Source	Identifier
0206	SA	Stock Appreciation (inventories)	$£ M$	ONS	DLRA+EQCB

Model equation: Technical Relationship (identity)
SA $=\quad \mathrm{g} B V^{*}((\mathrm{PINV} / \mathrm{g} P \mathrm{PV})-\mathrm{I})$

No.	Name	Description	Unit	Source	Identifier
0208	DINVHH	Change in inventories of households	$£ M$	ONS	RPZX

Model equation: Technical Relationship
DINVHH $=0.15$ * (I-g) DINVE

No.	Name	Description	Unit	Source
0210	CS	Real financing cost of stocks	$\%$	HMT

Model equation: Technical Relationship

```
CS = (PS TFE/ TFE&) [{TCPRO (I - ZONE) (PINV/ g4 PINV - I)/ (I - TCPRO)}
 +{0.0I (RS + 2) (I - TCPRO) + I - PS/ g 4
 / (I - TCPRO)}]
```


## COMMENT

The financing cost of stocks is an empirical representation of a theoretical construct based on dynamic optimisation subject to a quadratic adjustment cost function. This is essentially modelled as an interest rate less the capital gain on holding stocks ( $\mathrm{PINV} / \mathrm{g}^{4} \mathrm{PINV}$ - I), modified to take account of the tax system. ZONE and ZTWO are switch variables which take account of different stock relief regimes: ZONE $=1$ gives tax relief on nominal stock appreciation, zero otherwise; and ZTWO = I gives tax relief on the physical increase in stocks, zero otherwise. Under present circumstances when ZONE = ZTWO $=0$ the expression collapses to:
$\mathrm{CS}=(\mathrm{PINV} * T F E / T F E £)(\mathrm{RS}+2-\mathrm{PINV} / \mathrm{g} 4 \mathrm{PINV}+\mathrm{I}) / 100$

## Further Documentation:

Kelly C and Owen D (1985) `Factor Prices in the Treasury Model', Government Economic Service Working Paper No. 83.

No.	Name	Description	Unit	Source	Identifier
0211	DINV£	Change in inventories	$£ M$	ONS	CAEX

Model equation: Technical Relationship (identity)
DINVE $=0.01 *$ DINV $*$ PINV

No.	Name	Description	Unit	Source	Identifier
0212	DINVCG	CG change in inventories	$£ M$	ONS	RNDA

Model equation: Exogenous variable
Comment: This variable includes increases in Intervention Board for Agricultural Products (IBAPs) stocks and strategic and emergency stocks.

## GROUP THREE: INVESTMENT

There are two behavioural equations in this group, one for private sector companies gross fixed capital formation which is defined so as to include the public corporation and oil sectors, the other being for household investment in dwellings. The rest of the group consists of mainly technical relationships and identities.

No.	Name	Description	Unit	Source	Identifier
0301	IBUS	Business Investment	$£ M$, CVM	ONS	NPEL

Business investment is defined as Gross Fixed Capital Formation by 'private' sector companies; it includes investment by public corporations and North Sea companies but excludes investment in dwellings and purchases less sales of land and existing buildings.

Model equation: Behavioural Equation
$\operatorname{Ln}$ IBUS $=\mathrm{g} \operatorname{Ln}$ IBUS -0.117 \{ $\mathrm{g} \operatorname{Ln}(\mathrm{IBUS} / G V A)+0.53 \mathrm{~g} \operatorname{Ln}(C O C$ PGVA/ WCPS+.0035T)
$-0.40 \mathrm{~g} \operatorname{Ln}(\mathrm{BCCU})\}+0.52 \mathrm{~g}^{3}(\mathrm{I}-\mathrm{g}) \operatorname{LnGVA}+0.117$ DDUM85I-0.529
(3.9)
(0.9)
(5.7)
(-)

WCPS $=$ PSAVEI $[I+(E M P S C+N I S) / W F P] / I . I 5$
Estimation period: 1972QI to 2002Q4
$\mathrm{R}^{2}=0.436$
DW $=2.1$
$S E=0.0273$
Normality $\mathrm{CHI}^{2}=0.24$
LM F $(4,72)=0.73$
Hetero F $(1,80)=0.26$

## Summary of Equation Properties

Static long-run solution:
$\operatorname{Ln}$ IBUS $=\operatorname{Ln}$ GVA - 0.53 Ln (CC PGVA/ WCPS + .0035T) + 0.40 Ln (BCCU)
Effect on IBUS of a I\% increase in:

	Q1	Q5	Q9	Long-run
Output (GVA)	0.00	0.85	0.91	1.00
Capacity (BCCU)	0.00	0.02	0.03	0.04
Relative factor prices	0.00	-0.21	-0.33	-0.53

## Comment

This specification uses the cost minimisation approach, as in Kelly and Owen (1985). Accordingly investment is modelled as a function of output and relative factor prices. The term in capacity utilisation can be interpreted as an integral control mechanism, providing some feedback from the implicit capital stock. Firms invest in new capital on the basis of expectations of output and relative factor prices; if these turn out to have been too optimistic, capacity utilisation falls and firms cut back their investment plans. In the long run it is assumed that the investment-output ratio is proportional to the capital-output ratio.

Relative factor prices are adjusted for trend labour productivity as estimated from the employment equation, and as a consequence should be interpreted as the real cost of capital relative to the real wage per effective worker. The equation uses a measure of capacity utilisation in manufacturing as an imperfect proxy for private sector utilisation. A dummy variable is included for the corporation tax changes in the mid 1980s.

## Further Documentation

MRG (94) 6 `Financing Constraints and Investment' by Robert Woods AP(94) I5 `Business Investment' by Robert Woods, MSG(95) 5, MSG(97)I8

No.	Name	Description	Unit	Source	Identifier
0302	PCIH	PC's investment in dwellings	$£ M$, CVM	ONS	DKQH

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
0303	VAL	Net acquisitions of valuables	$£ M$, CVM	ONS	NPJR

Model equation: Exogenous variable

```
VAL = gVAL
```

No.	Name	Description	Unit	Source	Identifier
0304	GGI£	General Government GFCF	$£ M$	ONS	RNCZ+RNSM

Model equation: Technical Relationship (Identity)

$$
\text { GGI } £=\quad \mathrm{CGI} £+\mathrm{LAl} £
$$

No.	Name	Description	Unit	Source	Identifier
0305	IH	Private Sector investment in housing	$£ M, C V M$	ONS	DFEA

Model equation: Behavioural Equation
Ln IH =
$0.129 \mathrm{~g} \operatorname{Ln}(\mathrm{APH} / \mathrm{PCE})-0.0203 \mathrm{~g}(\mathrm{I}-\mathrm{g}) \mathrm{RS}-0.0027 \mathrm{~g}[$ RS $-400(\mathrm{I}-\mathrm{g}) \mathrm{Ln}$ APH]
(2.7)
(4.0)
$+(\mathrm{I}-0.32) \mathrm{g} \mathrm{Ln} \mathrm{IH}+2.759$

Estimation period: 1978QI to 2002Q4
$\mathrm{R}^{2}=0.23$
DW $=2.1$
SE $=0.07$
Normality $\mathrm{CHI}^{2}=2.3$
$\operatorname{LMF}(4,9$ I $)=I .74$
Hetero F $(1,80)=0.0005$

## Summary of Equation Properties

Static long-run solution:
$\operatorname{Ln} \mathrm{IH}=0.40 \mathrm{Ln}(\mathrm{APH} / \mathrm{PCE})-0.0084[$ RS $-400(\mathrm{I}-\mathrm{g}) \mathrm{Ln}$ APH] + constant
Effect on IH of a I\% increase in:

	Q1	Q5	Q9	Long-run
Real interst rate* [RS-400 (I-g) Ln APH]	0.0000	-0.0066	-0.0080	-0.0084
Real house prices (APH/PCE)	0.0000	0.3200	0.0380	0.4000
Short rates* (RS)	0.0000	0.0064	0.0010	0.0000
* Semi-elasticity				

## Comment

Previous versions of the model included separate equations for investment in new dwellings and for home improvements. We have now switched to an aggregate equation conditioned on real house prices, real interest rates and nominal short rates. The equation can be interpreted as a structural supply relation.

Further Documentation: GES Working Paper No.I23, MSG(96) 9

No.	Name	Description	Unit	Source	Identifier
0306	GGI	General Government GFCF	$£ M$, CVM	ONS	DLWF

Model equation: Technical Relationship (Identity)
$\mathrm{GGI}=0.01 *(\mathrm{GGI} £ / \mathrm{GGIDEF})$

No.	Name	Description	Unit	Source	Identifier
0307	VAL $£$	Net acquisitions of valuables	$£ M$	ONS	NPJQ

VALE $=0.01 *$ VAL $*$ PIF

No.	Name	Description	Unit	Source	Identifier
0308	IF	Total Gross Fixed Capital Formation	$£ M$, CVM	ONS	NPQT

Model equation: Technical Relationship (Identity)
$I F=\quad I B U S+I H+G G I+I P R L+P C L E B$

## Comment

This identity defines total gross domestic fixed capital formation in real terms as the sum of the individual sector categories: business investment, housing investment, general Government investment, transfer costs of land and existing buildings for the private sector and public corporations investment in land and existing buildings.

No. Name	Description	Unit	Source	Identifier
0309				

Model equation: Technical Relationship

$$
\begin{aligned}
& C O C=\left[R M-\left(P G V A / g^{4} \text { PGVA }-I\right)+2(0.6 / 23+0.25 / 60+0.15 / I 0)\right] \\
& {\left[1-0.6\left\{G P M+\frac{\text { TCPRO }(I-G P M)(S P+F P R M)}{(I+R M)^{1.25}(S P+R M)}+0.03\right\}-\right.} \\
& \left.0.25\left(\text { TCPRO }\left(\text { FIB }+ \text { SIB }(I-(I+R M))^{(\text {FFB }-1) / S I B)}\right) / R M\right)+0.03\right)- \\
& (1+R M)^{1.25} \text { (2.I) } \\
& \left.\left.(I+R M)^{-0.25} 0.15 \text { SV TCPRO / (SV + RM) ] PIF / [(I - TCPRO/ (I + RM) }{ }^{1.25}\right) \text { PGVA }\right] \\
& \text { Where: } \\
& \text { RM }=\quad \max [(0.213(1-\text { TCPRO }) /(1-1.25 \text { TCPRO RSL) } \\
& \text { + (0.677 (RSL (I-TPBRZ) + 0.I)/ (RSL (I-TPBRZ) } \\
& \text { + } 0.1 \text { (I - T4)) + 0.II)(I - TPBRZ)) RSL,0] } \\
& R S L=\quad 0.01(0.5 R S+0.5 R L)+0.015 \\
& \mathrm{~T} 4=\quad \begin{array}{ll}
0.3 & \text { if } \mathrm{T} \leq \mathrm{TZ}(1982 \mathrm{Q} \mathrm{I}) \\
0 & \text { if } \mathrm{T}>\mathrm{TZ}(1982 \mathrm{QI})
\end{array} \\
& G P M=0 \quad 0 \quad \text { if } \quad T>T Z(1970 Q 3) \\
& 0.20 \text { if } T \leq T Z(1970 Q 3) \\
& 0.25 \text { if } \mathrm{T} \leq \mathrm{TZ} \text { (1967Q4) } \\
& 0.20 \text { if } \mathrm{T} \leq \mathrm{TZ} \text { (1966Q4) }
\end{aligned}
$$

## Comment

This variable measure real own-product marginal post-tax cost of capital in private sector industry. It is a King-type measure, see Kelly and Owen (1985). The cost of finance measure, RM, weights together the cost of debt, equity and retained earnings, taking account of the different tax treatment of these sources of finance. The value of investment allowances available on plant and machinery and new building works are evaluated separately. For estimation purposes, the variable is defined with a forward looking inflation term, the data for which is computed as follows:

$$
\text { EXP }=\left\{I+[P G V A(+2)-\text { PGVA(-4)] /PGVA(-4) }\}^{0.67}-\mathrm{I}\right.
$$

The changes in the tax allowance regime are captured by the switch variables T, G, and GPM. The parameters of the investment allowance system are captured by asset specific Exogenous variables for the first year and annual writing down allowances FP, SP, FIB, SIB and SV.

## Further Documentation

Kelly, C, and Owen, D. 'Factor Prices in the Treasury Model', Government Economic Service Working Paper No. 83.

No.	Name	Description	Unit	Source	Identifier
03 IO	VALHH	Households' net acquisitions of valuables $£ M$	ONS	RPZY	

Model equation: Technical Relationship
VALHH $=0.25 *$ VAL $£$

Comment: Coefficient obtained from the long-run ratio between the two series.

No.	Name	Description	Unit	Source	Identifier
03II	NPAHH	HH net acquisitions of non-produced   non-financial assets e.g. land	$£ M$	ONS	RPZU

Model equation: Exogenous variable.
NPAHH $=\mathrm{g}$ NPAHH

No.	Name	Description	Unit	Source	Identifier
0312	IF	Total Gross Fixed Capital Formation	$£ M$	ONS	NPQS

Model equation: Technical Relationship (Identity)
$\mathrm{IFE}=\quad 0.0 \mathrm{I} * \mathrm{IF} * \mathrm{PIF}$

No.	Name	Description	Unit	Source	Identifier
0313	IHHE	Households GFCF	$£ M$	ONS	RPZW

Model equation: Technical Relationship
$\mathrm{IHHE}=\left(\left(0.5042^{*} \mathrm{APH} / \mathrm{I} . \mathrm{II} 22+(\mathrm{I}-0.5042)^{*} \mathrm{PI}\right) *\left(0.988 \mathrm{I}\right.\right.$ IH $+0.67 \mathrm{I} 3^{*}$ IPRL $)$
$+\mathrm{P} * 0.0758 *$ IBUS $) / 100$
*W PI $=\quad(\mathrm{PIF}-0.08424 * \mathrm{APH} / \mathrm{I} . \mathrm{I} \mid 22) /(\mathrm{I}-0.08424)$

## Comment

This equation allocates proportions of constant price investment to households and then converts to current prices using the relevant deflators. The weights reflect those used in the working variable ICOST that is a measure of investment costs used in the behavioural equation for the price of fixed investment - see comment under variable 0710 PIF.

No.	Name	Description	Unit	Source	Identifier
0314	ICC $£$	Private Non-Financial Companies GFCF	$£ M$	ONS	ROAW

Model equation: Technical Relationship

```
ICCE = ((0.5042*APH/I.II22 + (I-0.5042)*PI)*(0.0II9*IH + 0.3393*IPRL)
 + PI*0.8280*IBUS) / IOO
*W PI = (PIF-0.08424*APH/I.I I22)/(I-0.08424)
```

Comment: The variable is similar in construction to that for $\mathrm{HH} £$.

No.	Name	Description	Unit	Source	Identifier
0315	CGIDEF	General Govt Investment Deflator	Index	ONS	I00*(RNCZ+
				RNSM)/DLWF	

Model equation: Technical Relationship

```
GGIDEF = g GGIDEF * (PIF/ g PIF)
```

No.	Name	Description	Unit	Source	Identifier
0316	ILAND	Investment in land	$£ M, C V M$	HMT	l

Model equation: Technical Relationship (Identity)
ILAND = GGLEB + PCLEB + IPRL

No.	Name	Description	Unit	Source	Identifier
03I7	IPRL	Other Private Sector investment   (transfer costs for land \& existing   buildings)	$£ M$, CVM	ONS	DLWI

Model equation: Exogenous variable

## Comment

Gross fixed capital formation in land and existing buildings by the private sector covers primarily the capital cost of freeholds purchased, the capital cost of premiums payable for leaseholds acquired, associated professional fees and other transfer costs. Transfer costs cover stamp duty, legal fees, dealers' margins, agents' commissions and other costs incurred in connection with the transfer of ownership of land and buildings, together with any non-deductible VAT which they attract. Sales of council house dwellings are also included here. Over all sectors of the economy some of these items net out to give transfer costs only.

No.	Name	Description	Unit	Source
0320	FP	Rate of first year allowances for plant and machinery	$\%$	IR
032 I	SP	Rate of annual writing down allowance on plant and machinery	$\%$	IR
0322	FIB	Rate of first year allowance on industrial buildings	$\%$	IR
0323	SIB	Rate of annual writing down allowance on industrial buildings	$\%$	IR
0324	SV	Rate of annual writing down allowance on vehicles	$\%$	IR

Model equation: Exogenous variables
Comment: The rates on these investment allowances are obtained from Inland Revenue Statistics, they influence the cost of capital and corporation tax receipts.

No.	Name	Description	Unit	Source	Identifier
0326	GPW	Household sector gross physical wealth	£BN	ONS	CGRP

Model equation: Technical Relationship (Identity)
$\mathrm{GPW}=\quad 0.9933 \mathrm{~g} \mathrm{GPW} * \mathrm{APH} / \mathrm{g} \mathrm{APH}+0.00 \mathrm{I} *(\mathrm{IHH} £)$

## Comment

This data is only available annually and quarterly data is constructed by interpolation. Housing wealth is the main component of personal sector gross physical wealth, and so the equation simply revalues the previous period's wealth in line with house prices and adds on current price investment in housing.

No.	Name	Description	Unit	Source	Identifier
0327	IFC $£$	Investment by Financial Companies	$£ M$	ONS	RPYQ

Model equation: Technical Relationship (Identity)
IFC $£=\quad \mathrm{IF} £-\mathrm{IHH} £-\mathrm{ICC} £-\mathrm{LAI} £-\mathrm{CGI} £$ - IPC $£$

## Comment

Investment by FINCOs is obtained by residual from total investment and investment by households, PNFCs, general government, and public corporations (VI202).

## GROUP FOUR: THE LABOUR MARKET

The equations in the labour market group determine employment in the private sector (including public corporations) given the assumption that firms minimise costs subject to the production function and expected future sales. Employment in central Government and local authorities is exogenous. The market structure is assumed to be one of imperfect competition. Unemployment is determined via an equation for labour market participation.

No.	Name	Description	Unit	Source	Identifier
040 I	EPS	Private Sector employment (inc. PCs)	000 s	ONS	${ }^{1}$

*I = DYDC(Q)-LOJU(Q)-CGZH(Q)*I000-CULX(Q)-CUAN(Q)
Model equation: Behavioural Equation

```
Ln EPS = (I+0.722-0.722g)g Ln EPS - 0.064 g {Ln (EPS/GVA) - 0.04 Ln (CC*PVGA / WCPS)
 (13.4)
 (3.I)
 (-)
 +0.004I8 T } + 0.14g(I -g) Ln GVA - 0.985I4
 (23.5)
 (2.I)
WCPS \(=\) PSAVEI \([1+(\) EMPSC + NIS \() /\) WFP \(] / 1.15\)
Estimation period: 1982QI to 2003Q2
\(\mathrm{R}^{2}=0.79\)
\(\mathrm{SE}=0.0026 \quad\) Normality \(\mathrm{CHI}^{2}{ }_{2}=0.94\)
\(\operatorname{LMF}(4,77)=1.19\)
Hetero F \((1,84)=1.93\)
```


## Summary of Equation Properties

Static long-run solution:
Ln EPS $=\operatorname{Ln}$ GVA $+0.04 \operatorname{Ln}(C O C *$ PGVA/WCPS) -0.00418 TREND + constant
Effect on EPS of a I\% increase in:

	Q1	Q5	Q9	Long-run
Output (GVA)	0.0000	0.6010	1.0000	1.0000
Relative factor prices (COC PGVA/WCPS)	0.0000	0.0170	0.0400	0.0400

Comment: Private sector employment is defined as total workforce jobs less those on work related government training programmes and employment in general government. Employment is related to output with a unit long-run elasticity, relative factor prices, and a deterministic trend to capture underlying productivity growth. The equation implies long run productivity growth of around I.7\% per annum given relative factor prices. The coefficient on relative factor prices was imposed following an examination of simulation properties.

Further Documentation: $\operatorname{AP}(93) 2$ ` A supply side for the Treasury macroeconomic model' by J. Darby, C. Owen, and S. Wren-Lewis, MSG(97) I8

No.	Name	Description	Unit	Source	Identifier
0402	ETLFS	LFS employment (inc. self -employed)	000 s	ONS	MGRZ
	82			Version Mar'08	

Model equation: Technical Relationship.
ETLFS $=W F J$

## Comment

The residual on this equation accounts for the difference between the two measures of employment, and since the LFS measure refers to persons and the other to jobs this residual largely reflects second jobs.

No.	Name	Description	Unit	Source	Identifier
0404	ET	UK employed labour force (WFJ)	000 s	ONS	${ }^{2} 2$

*2 $=\operatorname{DYDC}(\mathrm{Q})-\mathrm{LOJU}(\mathrm{Q})$
Model equation: Technical Relationship (Identity)
$\mathrm{ET}=\quad \mathrm{EPS}+\mathrm{EOIL}+\mathrm{ECG}+\mathrm{ELA}$

## Comment

Total employment i.e. excluding those on work related government training programmes is equal to employment in the private sector (including public corporations), the North sea and nontrading general government.

No.	Name	Description	Unit	Source	Identifier
0405	ULFS	LFS unemployment (ILO)	000 s	ONS	MGSC

Model equation: Behavioural Equation

$$
\text { ULFS }=g \text { ULFS }+\underset{(13.4)}{0.30 \lg (1-g) ~ U L F S-\underset{(3.1)}{-0.0304} \mathrm{~g}(\text { ULFS }+\mathrm{IVB}+E D-P O P+W R G T P+0.8 \mathrm{ET})}
$$

$$
\begin{equation*}
-\left(0.363+0.269 \mathrm{~g}-0.173 \mathrm{~g}^{2}\right)(\mathrm{I}-\mathrm{g}) \mathrm{ET}-0.278(\mathrm{I}-\mathrm{g}) \text { IVB }-299.98 \tag{4.0}
\end{equation*}
$$

Estimation period: 1977QI to I998Q2
$\mathrm{R}^{2}=0.8 \mathrm{I}$
$S E=42.99$
Normality $\mathrm{CHI}^{2}{ }_{2}=0.59$
$\operatorname{LMF}(4,75)=1.38$
Hetero $\mathrm{F}(\mathrm{I}, 8 \mathrm{I})=1.79$

## Summary of Equation Properties

Static long-run solution:

$$
\text { ULFS }=\quad 1.0 *(\text { POP }- \text { WRGTP }- \text { ED }- \text { IVB })-0.8 * \text { ET + constant }
$$

Effect on ULFS of a I\% increase in:

	Q1	Q5	Q9	Long-run
(POP - WRGTP - ED)	0.0000	0.1480	0.2900	1.0000
Total Employment (ET)	-0.3630	-0.6880	-0.7040	-0.8000
IVB recipients	-0.2780	-0.4930	-0.5780	-1.0000

## Comment

The LFS measure of unemployment relates to people aged 16 and over who, when interviewed in the Labour Force Survey, stated that they were available to start work in the next two weeks and had either looked for work in the previous four weeks prior or were waiting to start a job they had already obtained. This International Labour Organisation (ILO) measure differs from the claimant count since it includes job seekers who are not in receipt of benefit but excludes those who register as unemployed and receive benefit but reply in survey questions that they are not actively searching for work.

The unemployment equation is essentially an equation for labour market participation. Key assumptions are that the number of full-time home students, IVB recipients and people on workrelated government training programmes is determined exogenously, and that participation from the population of working age net of these categories ( $\mathrm{POP}^{*}$ ) moves cyclically with employment. The long run coefficients were (validly) imposed.

Thus:
(ILOU+ET)/POP* = a + b (ET/POP*)

Where

```
ILOU = ILO unemployment
ET = total employment
POP* = POP - WRGTP - ED - IVB
```

Equation [ 1 ] is readily rewritten as
ILOU $=$ a POP* $-(\mathrm{I}-\mathrm{b}) \mathrm{ET} \quad 0<\mathrm{b}<\mathrm{I}$
Thus when employment falls by 100 (for given POP*), unemployment rises by less than 100 due to a `discouraged worker' effect whereby former participants leave the labour force and become inactive.

Further Documentation: MSG(95)8, MSG(95)|3, MSG(95)|6, MSG(97)II

No.	Name	Description	Unit	Source
0406 U	Claimant count unemployment	000 s	ONS	BCJD

Model equation: Technical Relationship
$U=\quad$ ULFS

## Comment

The claimant count records the number of people claiming Jobseeker's Allowance benefits, it is seasonally adjusted and consistent with current coverage to reflect the changes in definition. It is linked by identity to the ILO measure of unemployment.

No.	Name	Description	Unit	Source
0407	UNUKP	Claimant count unemployment rate	$\%$	HMT

Model equation: Technical Relationship (Identity)

$$
\text { UNUKP }=100 * U /(W F J+U)
$$

## Comment

The claimant count unemployment rate is a constructed variable but it is identical in definition to the series published by the ONS using the identifier BCJA.

No.	Name	Description	Unit	Source	Identifier
0408	IVB	Invalidity/Incapacity benefit recipients	000s	HMT	

Model equation: Exogenous variable

## Comment

The numbers of invalidity/incapacity benefit recipients can be obtained from the Department for Work and Pensions, figures and ONS identifiers for Gt Britain only can be obtained from Table 10.5 in the Annual Abstract of Statistics.

No.	Name	Description	Unit	Source	Identifier
0409	ED	Full-time home students in further and   higher education	000s	HMT	-

Model equation: Exogenous variable

## Comment

This variable can be sourced from Education statistics for the UK or the Department for Education and Skills who also produce some projections.

No.	Name	Description	Unit	Source	Identifier
0410	ES	Employers and self employed (WFJ)	000 s	ONS	DYZN(Q)

## Model equation: Exogenous variable

## Comment

Workforce Jobs (WFJ) figures are a measure of jobs rather than people. For example, if a person holds two jobs, each job will be counted in the WFJ total. For this reason, self-employment jobs (which come from the Labour Force Survey (LFS)) will not equal the figures for self-employed persons from the LFS.

No.	Name	Description	Unit	Source	Identifier
041 I	EOIL	Offshore oil and gas employment	000 s	ONS	CGZH(Q)

Model equation: Technical relationship
EOIL = gEOIL*(NSGVA/gNSGVA)

No.	Name	Description	Unit	Source	Identifier
0412	POP	Total population of working age	000 s	ONS	YBTF

Model equation: Exogenous variable

## Comment

This variable refers to the LFS estimate of household population. As well as private households the LFS includes two groups of people living in communal establishments: student halls of residence and National Health Service accommodation but excludes those living in other types of accommodation e.g. army camps, local authority homes and prisons. Projections can be made using the Government Actuaries' Department (GAD) projections for total population including those of working age.

No.	Name	Description	Unit	Source	Identifier
0413	WRGTP	Work Related Govt Training   Programmes	000 s	ONS	LOJU(Q)

Model equation: Exogenous variable

## Comment

This variable includes numbers on YOPS from 1979Q4 to 1983Q4 and covers programmes such as the Youth Training Scheme (YTS). It includes those who are receiving skills-based training in workplaces but do not have employee status: those who have employee status are included in employee jobs.

No.	Name	Description	Unit	Source	Identifier
0414	WFJ	Workforce in employment (WFJ)	000 s	ONS	DYDC(Q)

Model equation: Technical Relationship (Identity)
$W F J=\quad E T+W R G T P$

No.	Name	Description	Unit	Source	Identifier
0416	LFSUR	LFS unemployment rate (ILO)	$\%$	ONS	MGSX

Model equation: Technical Relationship (Identity)
LFSUR $=100 *$ ULFS $/($ ETLFS + ULFS $)$

## GROUP FIVE: EXPORTS OF GOODS AND SERVICES

This group contains equations for exports of non-oil goods and exports of services. It also includes various Exogenous variables reflecting world trade in non-oil goods, and measures of international competitiveness. The data used are based on a Balance of Payments rather than Overseas Trade Statistics basis. Trade prices are modelled in terms of average value indices (AVI).

No.	Name	Description	Unit	Source	Identifier
0501	XNO	Exports of Non-Oil goods inc. erratics	£M, CVM	ONS	BQAN

Model equation: Technical Relationship (Identity)
$\mathrm{XNO}=\quad \mathrm{XNOX}+\mathrm{XMTIC}$

No.	Name	Description	Unit	Source
0502	Identifier			

Model equation: Behavioural Equation
LnXNOX = Ln MKTGS + gLn(XNOX/MKTGS) - [0.522+0.203 g]g (I-g)Ln(XNO/ MKTGS)

- 0.118 g g Ln (XNOX / MKTGS) - 0.1I8 Ln RPRICE + I.I59-0.15I DD79।

Estimation period: 1976Q I to 2005Q4
$\mathrm{R}^{2}=0.64$
DW=1. 97
SE $=0.022$
Normality $\mathrm{CHI}_{2}^{2}=0.90$
LM F $(4, I 03)=0.68$
Hetero F $(\mathrm{I}, \mathrm{II} 0)=0.37$

## Summary of Equation Properties

Static long-run solution:
LnXNOX = Ln MKTGS - I. 0 Ln RPRICE + constant
Effect on XNOX of a $1 \%$ increase in:

	Q1	Q5	Q9	Long-run
UK Export Markets (MKTGS)	1.0000	1.0000	1.0000	1.0000
Relative export prices (RPRICE)	-0.1180	-0.3380	-0.5080	-1.0000

## Comment

This equation assumes that the demand for UK non-oil goods is determined by UK export market trade in non-oil goods and relative prices.

## Further Documentation

$\operatorname{MRG}(93) 7, \operatorname{MRG}(93) 8$ and $\operatorname{MRG}(93)$ I4
David Tan minutes of I July 1993 (to Rod Whittaker) and of 4th July 1993 (to Simon Brooks)
Robert Woods `Investment, R\&D and Manufactured Trade' AP(95) 2

No.	Name	Description	Unit	Source	Identifier
0503	XS	Total exports of services	$£ M$, CVM	ONS	IKBE

Model equation: Behavioural Equation
$\operatorname{Ln} X S=g \operatorname{LnXS}-0.37 \mathrm{~g}(\mathrm{I}-\mathrm{g}) \mathrm{Ln} X S-0.12 \operatorname{Ln}\left(\mathrm{~g}^{2} \mathrm{XS} / \mathrm{WTGS}\right)-0.092 \operatorname{Ln}(P X S * R X D /$ MI4CP $)$

- 0.078 DUM 91I-0.0938 DUM 02I + 0.343
(3.3)
(3.7)

Estimation period: 198IQ4 to 2003Q4
$\mathrm{R}^{2}=0.32$
DW=2.2
SE $=0.025$ I
Normality $\mathrm{CHI}^{2}=0.67$
LM F $(4,63)=1.02$
Hetero F $(\mathrm{I}, 70)=0.0075$

## Summary of Equation Properties

Static long-run solution:
$\operatorname{Ln}$ XS $=$ Ln WTGS - 0.75 Ln (PXS RXD / MI4CP) + constant
Effect on XS of a $1 \%$ increase in:

	Q1	Q5	Q9	Long-run
Relative prices (PXS*RXD/M6CP)	-0.1200	-0.3100	-0.4600	-0.7500
World trade in non-oil goods (WTGS)	0.1200	0.4100	0.6100	1.0000

## Comment

This equation conditions exports of services on a measure of world activity (world trade in nonoil goods) and a measure of price competitiveness.

No.	Name	Description	Unit	Source
$0504 \times G$	Total exports of goods	$£ M$, CVM	ONS	BQKQ

Model equation: Technical Relationship (Identity)
$X G=\quad X N O+X O I L$

No.	Name	Description	Unit	Source
$0505 \times$	Exports of goods and services	EM, CVM	ONS	IKBK

Model equation: Technical Relationship (Identity)
$X=\quad X S+X G$

No.	Name	Description	Unit	Source
0506	MKTGS	UK export markets for goods \& services	Index	HMT

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
$0507 \times £$	Exports of goods and services	$£ M$	ONS	IKBH	

Model equation: Technical Relationship (Identity)
$X E=\quad 0.01 *(X N O * P X N O+X S * P X S+X O I L * P X O I L)$

No.	Name	Description	Unit	Source
0508	XMTIC	MTIC fraud related exports, CVM	EM, CVM	ONS

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
0509	XMTIC $£$	MTIC fraud related exports, cash	$£ M$, cash	ONS	${ }^{*} 0509$

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
0510	WTGS	World Trade in non-oil Goods \&	Index	OECD	

Model equation: Exogenous variable

No.	Name	Description		Unit	Source
0512	RPRICE	Relative export prices		Identifier	
		90		Index	ONS

Model equation: Technical Relationship
$\operatorname{Ln}$ RPRICE $=-0.02+\operatorname{Ln}[100 * P X N O * R X D /(1.393 * W P G)]-0.000604 \mathrm{~T}$

## GROUP SIX: IMPORTS OF GOODS AND SERVICES

This group comprises a single behavioural equation for imports of non-oil goods and services. It also contains identities for total import volumes and values.

No.	Name	Description	Unit	Source	Identifier
0601	MNOS	Imports of Non-Oil goods and services	$£ M$, CVM	ONS	JTEA

Model equation: Technical Relationship (Identity)
MNOS $=\quad$ MNOSX + MMTIC

No.	Name	Description	Unit	Source	Identifier
0602	MNOSX	Imports of Non-Oil goods and Services   ex. MTIC	$£ M$, CVM	ONS	${ }^{* 0602}$

Model equation: Behavioural Equation
MNOSX $=(\mathrm{A}+0.6(\mathrm{XNOX}+\mathrm{XS}))[(\mathrm{I}-0.27) \mathrm{g} \mathrm{MA}-0.020 \mathrm{~g} \operatorname{Ln}(P M N O S X / D E F)$

$$
\begin{equation*}
\left.+0.0365 \operatorname{Ln} \operatorname{SPECX}+0.278\left\{\left(1-g^{3}\right) \operatorname{Ln} A\right\} \text { MA + } 0.002\right] \tag{4.8}
\end{equation*}
$$

$\mathrm{MA}=\quad \mathrm{MNOSXI}(\mathrm{A}+0.6(\mathrm{XNO}+\mathrm{XS}))$
$\mathrm{A}=\quad \mathrm{C}+\mathrm{DINV}+\mathrm{IF}+0.5 \mathrm{CGG}-\mathrm{NSGVA}+\mathrm{XOIL}-\mathrm{MOIL}$
DEF $=\quad 100 *\left(C^{*}+\right.$ DINV*+IF*+CGG*-OIL)/(C+DINV+IF+CGG-OIL-NSGVA+XOIL- MOIL)
OIL $=\quad(-X O I L * P X O I L+M O I L * P M O I L+100 *(($ NSGVA*PBRENT $) /(I 7 * R X D))$
Estimation period: I980Q I to 2004Q4
$\mathrm{R}^{2}=0.23$
DW=2.0
SE $=0.003$
Normality $\mathrm{Chi}^{2}{ }_{2}=1.21$
$\mathrm{LM} \mathrm{Chi}_{4}{ }_{4}=12.8$
Hetero $\mathrm{Chi}^{2}{ }_{1}=0.12$

## Summary of Equation Properties

Static long-run solution:
MNOSX $=(\mathrm{A}+0.6(\mathrm{XNOX}+\mathrm{XS}))[-0.07 \mathrm{Ln}(\mathrm{PMNOSX} / \mathrm{DEF})+0.12 \mathrm{LnSPECX}]$

Effect on MNOS of a I\% increase in:

	Q1	Q5	Q9	Long-run
Trend Specialisation (LnSPECX)	0.0320	0.0960	0.1140	0.1220
Relative Prices (Ln(PMNOSX / DEF))	0.0000	-0.0470	-0.0610	-0.0700
Domestic Absorption (LnA)	0.3070	0.3820	0.1140	0.0000

## Comment

The equation for imports of goods and services equation is based on a share specification that models the share of imports in domestic absorption (MA). The share is determined by relative prices; trend specialisation (an eight quarter backward moving average of the ratio of OECD exports to industrial production) and a difference term in the log of the domestic absorption, scaled by the share. The elasticities of the share with respect to its arguments depend on the values of the share. The introduction of chain-linked data has exacerbated problems with the share specification, the competitiveness elasticity was validly imposed and the constant was adjusted in the light of simulation properties.

Further Documentation: $\operatorname{AP}(90)$ 5, $\operatorname{MRG}(90)$ 5, $\operatorname{MRG}(90) 7, \operatorname{AP}(95) 5$

No.	Name	Description	Unit	Source	Identifier
0605	M	Imports of goods and services	$£ M$, CVM	ONS	IKBL

Model equation: Technical Relationship (Identity)

```
M = MNOS + MOIL
```

No.	Name	Description	Unit	Source	Identifier
0606	MMTIC	MTIC fraud related imports, CVM	$£ M$, CVM	ONS	$* 0606$

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
0607	SPECX	Trend specialisation in world trade and   industrial production.	Index	HMT	

Model equation: Exogenous variable

## Comment

This variable captures trend specialisation in world production and is defined as an eight quarter moving average ratio of world trade to industrial production.

No.	Name	Description	Unit	Source	Identifier
0608	MMTIC $£$	MTIC fraud related imports, cash	$£ M$, Cash	ONS	${ }^{* 0608}$

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
0609	$M £$	Imports of goods and services	$£ M$	ONS	IKBI

Model equation: Technical Relationship (Identity)
ME $=\quad 0.01 *($ MNOS $*$ PMNOS + MOIL $*$ PMOIL $)$

No.	Name	Description	Unit	Source	Identifier
0610	TB	Balance of trade in goods \& services	$£ M$	ONS	IKBJ

Model equation: Technical Relationship (Identity)
TB $=\quad(X N O * P X N O+X S * P X S ~+~ X O I L * P X O I L ~-~ M N O S * P M N O S ~-~ M O I L * P M O I L) / I 00 ~$

## GROUP SEVEN: PRICES, COSTS AND EARNINGS

This group contains average earnings and all the price equations in the model, including the expenditure deflators, trade prices and exogenous world prices. Retail prices are determined according to the behavioural equation for the RPI excluding mortgage interest payments, rent and rates/council tax (RROSSI). Domestic producer prices (PPIY) are determined along similar lines as retail prices. Producer prices are a major determinant of competitiveness and feed into retail costs and other prices, for example the investment deflators and trade prices.

No.	Name	Description	Unit	Source	Identifier
070 I	PPIY	Producer output price index ex. taxes	Index	ONS	PVNQ

Model equation: Behavioural Equation

```
\(\operatorname{Ln}\) PPIY \(=0.05+\mathrm{g} \operatorname{Ln}\) PPIY \(+0.723 \mathrm{~g}(\mathrm{I}-\mathrm{g}) \mathrm{Ln}\) PPIY \(+0.0 \mathrm{II} 8(\mathrm{I}-\mathrm{g}) \operatorname{Ln}(\) PBRENT/RXD \()\)
 (5.7)
 (17.8)
-0.077 \{ \(\mathrm{g} \operatorname{Ln}\) PMNOS \(-0.55 \mathrm{~g} \operatorname{Ln}(\) ULCPS \(-0.001 \mathrm{IT})-(1.0-0.55) \mathrm{g} \operatorname{Ln}\) PMNOS \}
 (-)
 (-)
 (3.5)
 (-)
 \(+0.14(\mathrm{I}-\mathrm{g})\) Ln PMNOS+ (\(\mathrm{I} .0-0.723-0.0 \mathrm{II}-0.14)(\mathrm{I}-\mathrm{g}) \operatorname{Ln}\) ULCPS
 (6.6)
 (-)
```

Estimation period: 1976Q4 to 2002Q4
$R^{2}=0.86$
DW=2.I
SE $=0.004$
LM F $(4,95)=$ I.I
Hetero F $(\mathrm{I}, \mathrm{I} 03)=5.7$

## Summary of Equation Properties

Static long-run solution:
Ln PPIY $=0.45 \operatorname{Ln}$ PMNOS + 0.55 Ln (ULCPS -.00II T) + constant
Effect on PPIY of a I\% increase in:

	Q1	Q5	Q9	Long-run
Unit labour costs (ULCPS)	0.1220	0.5300	0.6540	0.5500
Import prices (PMNOS)	0.1410	0.5200	0.5730	0.4500
Oil prices	0.0120	0.0230	0.0100	0.0000

## Comment

The theory underlying the determination of producer output prices is that of the imperfectly competitive firm maximising profit subject to a downward sloping demand curve and its production function. Private sector unit labour costs are modified by a time trend in an attempt to reflect the difference between private sector and manufacturing productivity growth. The equation possesses both static and dynamic homogeneity, but dynamic homogeneity was imposed. Dynamic homogeneity implies that the margin of prices over costs is invariant to the rate of price inflation in the steady state.

Further Documentation: MRG(89)4, MRG(89)3, MSG(97)7

No.	Name	Description	Unit	Source	Identifier
0702	ADJW	  salaries	Number	HMT	

Model equation: Technical Relationship
ADJW = g ADJW

## Comment

Whole economy wages and salaries is defined as the sum of general government and 'private' sector wages and salaries, but when this is calculated as the sum of average earnings indices multiplied by employment there is a small residual that is captured by this variable.

ADJW $=$ [WFP- (0.049665*ERCG*ECG $+0.035689 * E R L A * E L A)] /(P S A V E I *(E P S-E S+E O I L))$

No.	Name	Description	Unit	Source	Identifier
0703	PCE	Consumers' expenditure deflator	Index	ONS	$100^{*}$
					(ABJQ+HAYE)

Model equation: Technical Relationship

$$
\begin{aligned}
\operatorname{Ln} P C E= & \operatorname{Ln}\{[P R X M I P-(0.038 \mathrm{PCT}+0.047 \mathrm{HD}) /(\mathrm{I}-0.039)] /(\mathrm{I}-(0.038+0.047) /(I-0.039))\} \\
& -0.007 * \mathrm{Q} 2+0.403
\end{aligned}
$$

## Comment

This equation links the consumers' expenditure deflator to the retail price index (PR) excluding mortgage interest payments (PRXMIP), the community charge / council tax (PCT), housing depreciation (HD) and a seasonal dummy.

No.	Name	Description	Unit	Source	Identifier
0704	RPCOST	Index of retail price costs	Index	HMT	

Model equation: Technical Relationship

```
RPCOST = 0.01 *[6I.9*ULCPS + 0.88*PMOIL + 32.I*PMNOS + 4.5*TAX
 + (I00 .62* PBRENT) / (I8.85*RXD)]
```


## Comment

The parameters that precede each cost component are weights. There were calculated from 1990 input-output tables by decomposing expenditure on goods and services into inputs into domestic production, indirect taxation that falls on firms, inputs into distribution and retailing, and expenditure on finished imports.

Further Documentation: MSG(97)20

No.	Name	Description	Unit	Source	Identifier
0705	RROSSI	RPI ex. MIPs, council tax and rents	Index	ONS	GUMF

Model equation: Behavioural Equation
$\operatorname{Ln}$ RROSSI $=\operatorname{Ln}\left\{\left[g^{4}\right.\right.$ RROSSI $g^{4}(I-0.01$ RPTAX $\left.)\right] /(I-0.0 I$ RPTAX $\left.)\right\}$

$(-) \quad(-)$

- $0.107 \mathrm{~g}^{4} \operatorname{Ln}\left[\right.$ RROSSI (I - 0.0I RPTAX) / RPCOST] $+0.0634 \mathrm{~g}^{2}\left(\mathrm{I}-\mathrm{g}^{4}\right) \mathrm{Ln} \mathrm{C}$ (3.5)
$+0.095 \mathrm{~g}\left(\mathrm{I}-\mathrm{g}^{4}\right) \mathrm{Ln}(\mathrm{GVA} / E P S)$ (2.8)

Estimation period: 1977QI to 2002Q4
$\begin{array}{ll}\mathrm{R}^{2}=0.978 & \operatorname{Norm~CHI~}{ }_{2}=5.2 \\ S E=0.0056 & \operatorname{LMF}(4,94)=1.97\end{array}$

## Summary of Equation Properties

Static long-run solution:
Ln RROSSI = Ln RPCOST - Ln (I - 0.01 RPTAX) + constant
Effect on RROSSI of a I\% increase in:

	Q1	Q5	Q9	Long-run
RPCOST	0.2380	0.8600	1.1100	1.0000
Consumption	0.0000	0.1600	0.2440	0.0000
Productivity	0.0000	0.2970	0.3680	0.0000

## Comment

The specification assumes prices are a mark-up on costs. Short-term changes in retailers' margins are captured by the term for the change in consumption. Note that the change in productivity term implies that RROSSI is not dynamically homogenous with respect to productivity.

## Further Documentation

MRG(94)I4, MSG(95)9,MSG(95)I5, MSG(95)I8, MSG(95)29, MSG(97)I5

No.	Name	Description	Unit	Source	Identifier
0706	DUTRPI	Average rate of duty on RROSSI	$\%$	HMRC	-

Model equation: Technical Relationship

```
DUTRPI = [(I + (0.333 * ZSWTE4
 \(+(\mathrm{I}-0.333) *\) ZSWTCH g) \(\left(-I+(I+2 g) P R / g^{4}(I+2 g) * P R+0.0329\right) * 0.74\)
 \(+(I-0.74) *\) ZSWTCH g (\((1+2 g)\) PR/g \(g^{4}(I+2 g)\) PR-I \(\left.\left.)\right)\right]^{*} g R R O S S I * g D U T R P I / R R O S S I\)
 if \(T \geq\) TZ (I996Q2)
Where ZSWTE4 = 0 if \(\mathrm{T}<\mathrm{TZ}\) (1994Q4)
 ZSWTE4 \(=Q_{4} \quad\) if \(T \geq T Z\) (I994Q4)
 ZSWTCH \(=0 \quad\) if \(T<T Z\) (I995QI)
 ZSWTCH \(=Q_{1} \quad\) if \(T \geq T Z\) (I995QI)
```

No.	Name	Description	Unit	Source	Identifier
0707	ICOST	Investment Costs: I-O decompostion	Index	HMT	-

Model equation: Technical Relationship
ICOST $=0.5 I 7 *$ ULCPS $+0.406 * P M N O S+0.077 * A P H$

No.	Name	Description	Unit	Source	Identifier
0708	PR	Retail Prices Index (RPI)	Index	ONS	CHAW

Model equation: Technical Relationship

$$
P R=\quad \quad 183.1 *[(I-0.039) * P R X M I P / I 8 I .4+0.039 * P R M I P / 220.4]
$$

## Comment

This equation simply weights together the components of the RPI. Prior to 1987 the identifier for this variable is FRAG.

No.	Name	Description	Unit	Source	Identifier
0709	PINV	Inventories deflator	Index	HMT	

Model equation: Technical Relationship

$$
\begin{aligned}
\operatorname{Ln} \text { PINV }= & 0.89295 * \operatorname{Ln}(\text { PPIY })+0.10393 * \operatorname{Ln}(\text { PMNOS }) \\
& +(1-0.89295-0.10393) * \operatorname{Ln}(100 * \text { PBRENT }) /(\text { OILBASE*RXD }))
\end{aligned}
$$

## Comment

The equation relates the inventories deflator to producer prices, import prices, and the world price of oil. Static homogeneity is imposed. There are currently no data on a time series basis for inventory levels at current and constant prices, the series was constructed by rescaling the constant price series and deriving the deflator appropriately.

No.	Name	Description	Unit	Source	Identifier
0710	PIF	Investment deflator (total GFCF)	Index	ONS	$100^{*}$
				(NPQS/NPQT)	

Model equation: Behavioural Equation

$$
\begin{align*}
& \operatorname{Ln} \text { PIF }=\quad g \operatorname{Ln} \text { PIF }-0.0043^{*} Q^{\prime}-0.124^{*}\left(g \operatorname{Ln}(\text { PIF } / \text { ICOST })+0.002 I^{*}(T-40)\right) \\
& \text { (I.9) (3.3) }  \tag{7.0}\\
& +\left(0.223 g^{2}+0.294 g^{4}\right)(\mathrm{I}-\mathrm{g}) \text { Ln PIF } \\
& +(0.268+(\mathrm{I} .0-0.223-0.294-0.268) \mathrm{g})(\mathrm{I}-\mathrm{g}) \operatorname{Ln} \text { ICOST }+0.0216  \tag{2.8}\\
& \text { ICOST }=\quad 0.5 I 7 * U L C P S+0.406 * P M N O S+0.077 * A P H \tag{-}
\end{align*}
$$

Estimation period: 1980QI to 2002Q4
$\mathrm{R}^{2}=0.56 \quad$ Norm CHI ${ }_{2}=3.17$
$S E=0.009$
Hetero F(I,90) $=2.24$

## Summary of Equation Properties

Static long-run solution:
Ln PIF $=\quad$ Ln ICOST -.0021 Trend + constant
Effect on PIF of a I\% increase in:

	Q1	Q5	Q9	Long-run
Investment costs (ICOST)	0.2700	0.9200	1.1800	1.0000

## Comment

The price of investment is assumed to be determined as a mark up over costs that are proxied by ULCPS, PMNOS and APH respectively. The weights on ULCPS and PMNOS were obtained from Input-Output tables. The weight on APH reflects the weight of investment in new buildings in total investment, with its cost being proxied by house prices. The time trend may reflect productivity differentials.

Further Documentation: MSG (95) IO

No.	Name	Description	Unit	Source	Identifier
071 I	RPTAX	Average tax rate on RROSSI	$\%$	HMT	-

Model equation: Technical Relationship
RPTAX $=$ DUTRPI $+100 * 0.63 *$ TVAT

No.	Name	Description	Unit	Source	Identifier
0712	PRMIP	MIPs index in the RPI	Index	ONS	DOBQ

Model equation: Technical Relationship
PRMIP $=\quad\left[1.015^{*}\right.$ g PRMIP*RMORT $(1-$ TMIRAS $\left.)\right] /[g$ RMORT $g(1-$ TMIRAS $)]$

No.	Name	Description	Unit	Source	Identifier
0713	PRXMIP	RPI excluding MIPs	Index	ONS	CHMK

Model equation: Technical Relationship

$$
\begin{aligned}
\text { PRXMIP }= & \\
& I 89.4 *(((I-(0.045+0.039+0.044 * \text { ifge(I9950I) }) /(\mathrm{I}-0.050)) * \mathrm{RROSSI}) / I 77.4 \\
& +(0.045 * \text { PRENT/273.6 }+0.039 * \text { PCT/268.I }+0.044 * H D / 26 \mathrm{I} .3) /(\mathrm{I}-0.050))
\end{aligned}
$$

## Comment

Prior to 1987 the identifier for this variable is RYYW.

No.	Name	Description	Unit	Source	Identifier
0714	PXNO	AVI for exports of non-oil goods	Index	ONS	$100^{*}$

Model equation: Behavioural Equation
DLn PXNO $=-0.118 \mathrm{I}\{\mathrm{g} \operatorname{Ln}$ PXNO-0.56g Ln PPIY $-(\mathrm{I}-0.56) \mathrm{g} \operatorname{Ln}(\mathrm{WPG} / \mathrm{RXD})+0.002 * T\}$
(4.4)
(-)
(7.6)
$+0.84(\mathrm{I}-\mathrm{g}) \operatorname{Ln}$ PPIY + (I-0.84) $(\mathrm{I}-\mathrm{g}) \mathrm{Ln}(\mathrm{WPG} / \mathrm{RXD})+0.04 * \mathrm{D} 93 \mathrm{I}+0.063$
(4.I)

NB Left hand side is specified in ${ }^{\text {st }}$ difference.
Estimation period: 1974Q2 to 2003Q3
$\mathrm{R}^{2}=0.76$
Norm CHI ${ }_{2}=0.4$
SE $=0.0105$
Hetero $\mathrm{F}(\mathrm{I}, 90)=0.06$
LM F $(4,108)=1.4$

## Summary of Equation Properties

Static long-run solution:
$\operatorname{Ln}$ PXNO $=0.56 * \operatorname{Ln}$ PPIY $+(I-0.56) * \operatorname{Ln}(W P G / R X D)-0.002$ Trend + constant
Effect on PXNO of a I\% increase in:

		Q1	Q5	Q9
Long-run				
Domestic prices (PPIY)	0.8400	0.7300	0.6600	0.5560
World prices (WPG/RXD)	0.1600	0.2700	0.3400	0.4440

## Comment

The AVI for exports of non-oil goods is determined by domestic producer output prices and the world price of non-oil goods. The former captures domestic cost pressures. The latter is weighted according to shares of world trade and converted into domestic currency using the dollar/sterling exchange rate. The static and dynamic homogeneity restrictions were easily accepted by the data.

Further Documentation: MSG (95) I0, MSG (95) 17

No.	Name	Description	Unit	Source	Identifier
0715	ULCPS	Private Sector Unit Labour Costs	Index	HMT	

Model equation: Technical Relationship
ULCPS $=(0.1 *$ PSAVEI $* T E *(E P S+E O I L)) /(0.01367 *$ GVA $)$
$\mathrm{TE}=\quad \mathrm{I}+(\mathrm{EMPSC}+\mathrm{NIS}) / \mathrm{WFP}$

No.	Name	Description	Unit	Source	Identifier
0716	PRENT	Rent component of the RPI	Index	ONS	DOBP

Model equation: Technical Relationship (Identity)
PRENT $=\quad[0.3257 \mathrm{PCE} / \mathrm{g} \mathrm{PCE}+(\mathrm{I}-0.3257) \mathrm{HRRPW} / \mathrm{g} \mathrm{HRRPW}] \mathrm{g}$ PRENT

## Comment

The equation weights together local authority rents and private rents, which are assumed to grow in line with the consumers' expenditure deflator.

No.	Name	Description	Unit	Source	Identifier
0717	PXS	AVI for exports of services	Index	ONS	$100^{*}$
				(IKBB/IKBE)	

Model equation: Behavioural Equation

$$
\operatorname{dog}(P X S)=\underset{(-)}{0.67 * \operatorname{dog}(\text { RROSSI })+(I-0.67) * d \log (P M N O S)}
$$

- 0.I56*( $\log ($ PXS(-I)) $-\log ($ RROSSI(-I))) -0.794
- 0.064*(ifeq(200103)-ifeq(200104)) -0.063*(ifeq(200503)-ifeq(200504))

Estimation period: 197 I Q2 to 2005Q4
$\mathrm{R}^{2}=0.60$
$D W=2.1$
$S E=0.015$

## Summary of Equation Properties

Static long-run solution:
Ln PXS = Ln ROSSI + constant
Effect on PXS of a I\% increase in:

	Q1	Q5	Q9	Long-run
Domestic prices (ROSSI)	0.6700	0.8300	0.9200	1.0000
Import prices (PMNOS)	0.3300	0.1700	0.0850	0.0000


No.	Name	Description	Unit	Source	Identifier
0718	PMNOS	AVI for imports of non-oil goods and	Index	ONS	$100^{*}$
	services			(IKBI-ENXO)	
				$/ J T E A$	

Model equation: Behavioural Equation

Ln PMNOS $=g \ln P M N O S-0.248\left\{g L n P M N O S-(I-0.496)^{*} g \operatorname{LnPPIY}-0.496 * g \operatorname{Ln}(W P G / R X D)\right.$
(4.3)
(-)

$$
\begin{gather*}
+0.0028 * T\}+0.0459 * R C O M+0.696(\mathrm{I}-\mathrm{g}) \operatorname{Ln} \text { PPIY }+0.304(\mathrm{I}-\mathrm{g}) \operatorname{Ln}(W P G / R X D) \\
(14.4) \tag{14.4}
\end{gather*}(3.6) \quad(-) \quad(8.9)
$$

$+0.063+0.063 * D D 784-0.0736 * D 793$
(4.7) (4.7)

Ln RCOM = - Ln WPG + I.I3 Ln WPBM + (I-I.I3) Ln PBRENT
Estimation period: 1974Q2 to 2003Q3
$R^{2}=0.666$
DW $=2.0$
SE $=0.0131$
Norm CHI ${ }_{2}=12.3$
$\operatorname{LM} F(4,106)=0.2$
Hetero $\mathrm{F}(\mathrm{I}, 86)=1.5$

## Summary of Equation Properties

Static long-run solution:
Ln PMNOS $=0.15 * \operatorname{Ln}$ RCOM $+0.5 * \operatorname{Ln}$ PPIY $+0.5 * \operatorname{Ln}(W P G / R X D)+$ constant
Effect on PMNOS of a I\% increase in:

	Q1	Q5	Q9	Long-run
Producer Output Prices (PPIY)	0.6960	0.5650	0.5240	0.5000
World prices in sterling (WPG/RXD)	0.3040	0.4340	0.4760	0.5000
World Price of Raw Materials (RCOM)	0.0406	0.1410	0.1710	0.1850

## Comment

Prices are determined by domestic market conditions (proxied with PPIY), the world price of nonoil goods and the relative commodity intensity of UK imports (RCOM). A positive sign on RCOM indicates that the UK's manufactured imports use relatively more of that import, and a negative sign means they use less. Static and dynamic homogeneity are imposed.
Further Documentation: MSG(95) 5, MSG(95) I7

No.	Name	Description	Unit	Source	Identifier
0719	PMNOSX	AVI: imports of non-oil goods \& services	Index	ONS	${ }^{2} 0719$
		ex. MTIC			

Model equation: Technical Relationship
ratio(PMNOSX) $=$ ratio(PMNOS)

No.	Name	Description	Unit	Source	Identifier
0721	CPI	Consumer Prices Index, $1996=100$	Index	ONS	CHVJ

Model equation: Technical Relationship

CPI $=\mathrm{GCPI} *(0.952 *$ RROSSI $+(\mathrm{I}-0.952) *$ PRENT $) /$

$$
g(0.952 * \text { RROSSI }+(\mathrm{I}-0.952) * \text { PRENT })-0.0012
$$

No.	Name	Description	Unit	Source	Identifier
0724	PSAVEI	Private Sector Average Earnings Index	Index	ONS	LNKY

Model equation: Behavioural Equation
Ln PSAVEI $=\mathrm{g}$ Ln PSAVEI $+\left\{0.575+0.14 \mathrm{I} \mathrm{g}+0.096 \mathrm{~g}^{2}+0.188\right\} \mathrm{g}^{3}(\mathrm{I}-\mathrm{g})$ Ln PGVA (6.0) (1.6) (1.1) (-)

- $0.056(\mathrm{I}-\mathrm{g}) \mathrm{Ln}$ LFSUR -0.022 g Ln LFSUR $+0.377(\mathrm{I}-\mathrm{g})$ Ln PRODPS (2.7)
(3.9)
- 0.164 g Ln [PSAVEI /(PRODPS PGVA)] + 0.155 Ln UDEN
$-0.075 \mathrm{~g}^{3}(\mathrm{I}-\mathrm{g}) \operatorname{Ln}$ RETRA -0.164 Ln TE $+0.089 \mathrm{I}(\mathrm{I}-\mathrm{g}) \mathrm{Ln}($ PRXMIP/ PGVA)
(3.7)
(-)
- 0.0227*DUM7579-0.154
$\begin{array}{ll}\text { RETRA } & =1-(\text { TYEM }+ \text { EENIC }) / \text { WFP } \\ \text { PRODPS } & =\text { GVA } / \text { EPS } \\ \text { TE } & =1+(\text { EMPSC }+ \text { NIS }) / W F P\end{array}$
Estimation period: I972Q4-1999Q4
$\mathrm{R}^{2}=0.72$
$\mathrm{SE}=0.008 \mathrm{I} \quad$ Norm $\mathrm{CHI}_{2}{ }_{2}=2.92$
$\operatorname{LMF}(4,93)=1.15 \quad$ Hetero $F(1,107)=11.1$


## Summary of Equation Properties

Static long-run solution:
Ln PSAVEI = -0.09I7*Ln LFSUR + Ln PRODPS + Ln PGVA + 0.95*Ln UDEN - Ln TE + C
Effect on PSAVEI of a I\% increase in:

	Q1	Q5	Q9	Long-run
GVA deflator (PGVA)	0.575	1.010	1.050	1.000
Unemployment (LFSUR)	-0.056	-0.096	-0.120	-0.130
Retention Ratio (RETRA)	0.000	-0.063	-0.031	0.000
Private sector productivity (PRODPS)	0.377	0.700	0.850	1.000
Union Density (UDEN)	0.155	0.560	0.760	0.950
PRXMIP / PGVA	0.089	0.044	0.021	0.000
Employers tax rate (TE)	-0.164	-0.590	-0.800	-1.000

## Comment

This equation is based on the familiar Layard-Nickell model in which wages (but not employment) are set in a bargaining framework. The data was not supportive of long run effects from the tax and terms of trade wedges. Pressure of demand effects are captured by a term in the LFS measure of unemployment. This measure may be a better indicator of labour market pressure than the claimant count since it includes job seekers not in receipt of benefit but excludes benefit claimants who reply in the survey question that they are not actively searching for work.

No.	Name	Description	Unit	Source	Identifier
0725	ERCG	CG average earnings index, 2000 $=100$	Index	ONS	NMAI/
0726	ERLA	LA average earnings index, 2000 $=100$	Index	ONS	C9K9(Q)
					NMJF/

Model equations: Technical Relationships
ERCG $=\quad$ PSAVEI $g^{4}$ (ERCG/PSAVEI)
ERLA $=\quad$ PSAVEI $g^{4}$ (ERLA/ PSAVEI)

## Comment

Both indices are derived by dividing wages and salaries by workforce jobs and rebasing to 2000. For both of these public sector earnings variables the forecasting equation suggests a growth path following that of the private sector. An appropriate residual setting can impose a positive or negative wage growth gap between the public and private sector as desired. See also the comment for V0702.

No.	Name	Description	Unit	Source	Identifier
0727	PCT	Rates/Community Charge RPI	Index	ONS	DOBR

Model equation: Technical Relationship
PCT = $\left.[\mathrm{Q} I+\mathrm{Q} 3+\mathrm{Q} 4+\mathrm{Q} 2 * \mathrm{CC}) / \mathrm{g}^{4}(\mathrm{CC}-0.0 \mathrm{I})\right] \mathrm{g} \mathrm{PCT}$

## Comment

The variable CC (VIO29) measures council tax that is uprated in Q 2 .

No.	Name	Description	Unit	Source	Identifier
0731	HRRPW	LA gross rent per house per week $(£)$	$£$	HMT	-

Model equation: Technical Relationship
$\mathrm{HRRPW}=\left[\mathrm{Q} 1+\mathrm{Q} 3+\mathrm{Q} 4+\mathrm{Q} 2 *(\mathrm{I}+0.05) * \mathrm{PGDP} / \mathrm{g}^{4} \mathrm{PGDP}\right] \mathrm{g}$ HRRPW

## Comment

The current value for HRRPW is last period's adjusted for the change in inflation, defined here by a small margin over the GDP deflator. Data for England and Wales from Housing Rent Statistics (CIPFA); for Scotland - Scottish Housing Statistics.

No.	Name	Description	Unit	Source	Identifier
0733	WPG	World price of goods	Index	IMF	-
0734	WPBM	World price of basic materials (\$)	Index	HMT	-

Model equations: Exogenous variables

## Comment

The world price of goods is the IMF advanced economy manufactures price and can be obtained from the IMF World Economic Outlook.

No.	Name	Description	Unit	Source	Identifier
0735	MI4CP	Major 14 consumer prices	Index	HMT	-

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
0736	APH	Average House Price	Index	ODPM	-

The data is from the ODPM website in Table 59I Housing market: Mix-adjusted house price index.

Model equation: Behavioural Equation
$\operatorname{Ln} \mathrm{APH}=\mathrm{g} \operatorname{Ln}(\mathrm{APH} * \mathrm{PCE} / \mathrm{gPCE})-0.035 \mathrm{I} \mathrm{g}(\mathrm{Ln}$ APH $/$ PCE $)$

- $0.0416 \mathrm{~g} \mathrm{Ln}((100000 \mathrm{GPW}) /(\mathrm{APH} * \mathrm{OWC} * \mathrm{C}))-0.0008 \mathrm{~g}[\mathrm{RHF}-400(\mathrm{I}-\mathrm{g}) \mathrm{LnAPH}]$
$+0.262 \mathrm{~g}(\mathrm{I}-\mathrm{g}) \mathrm{Ln}\left(\mathrm{g}^{3} \mathrm{APH} / \mathrm{PCE}\right)+0.796 \mathrm{~g}(\mathrm{I}-\mathrm{g}) \operatorname{Ln} \mathrm{C}+0.609 \mathrm{~g}^{2}(\mathrm{I}-\mathrm{g}) \operatorname{Ln} \mathrm{C}$
(3.4)

$$
\begin{equation*}
+0.0748 * \text { DUM723 - 0.0191*DUMAHP + } 0.12 \tag{3.8}
\end{equation*}
$$

Estimation period: 197 IQ 2 - 2002Q4
$\mathrm{R}^{2}=0.57$
SE $=0.021 \quad$ Norm $\mathrm{CHI}^{2}{ }_{2}=3.35$
$\operatorname{LMF}(4,114)=1.54$
Hetero F(I,I25) $=0.36$

## Summary of Equation Properties

Static long-run solution:
$\operatorname{Ln}$ APH $=\quad \operatorname{Ln}$ PCE $-1.19 \operatorname{Ln}(100000$ GPW/APH*OWC*C) $-0.022($ RHF $-400(1-g) \operatorname{LnAPH})$
Effect on APH of a I\% increase in:

	Q1	Q5	Q9	Long-run
Consumer prices	1.000	1.000	1.000	1.000
Consumption	0.000	1.440	1.750	1.190
Housing wealth	0.000	-0.160	-0.330	-1.190
Owner occupation	0.000	0.160	0.330	1.190
Real interest rate on housing loans *	0.000	-0.003	-0.006	-0.020
* semi-elasticity				

## Comment

This equation is based on work carried out for the Treasury by the National Institute of Economic and Social Research. It may be interpreted as an inverted demand function. In the long run, real house prices adjust to equalise supply (proxied by the stock of personal sector physical wealth) and demand (captured by real consumption multiplied by the owner occupation rate). House prices are also affected by the real interest rate on borrowing for house purchase.

The chosen functional form explicitly links the measure of permanent income in the consumption function to that in the housing demand function to ensure consistency in personal sector
behaviour. The equation displays both static and dynamic homogeneity with respect to consumer prices.

There is considerable overshooting with respect to consumption, due to powerful dynamic terms. However, the single equation rational lag analysis must be interpreted with some caution due to the highly endogenous nature of house prices in the model.

Further Documentation: GES Working Paper No. 123

No.	Name	Description	Unit	Source	Identifier
0737	RHF	Interest rate on housing finance	$\%$	HMT	
Model equation:	Technical Relationship				

RHF $=\quad$ RMORT $*(I-$ TMIRAS $* F C)-F D$

FC $=\quad 0.25 *(1-0.001 *$ LHP/GPW $)+0.00073 *$ LHP/GPW
$\mathrm{FD}=\quad(\mathrm{I}-0.25 *$ TPBRZ $) *($ RMORT - RDEP $)(\mathrm{I}-0.00 \mathrm{I} *$ LHP/GPW $)$

## Comment

This specification reflects the interest costs of borrowing mortgage funds and the opportunity cost of housing equity. The coefficient on the proportion of mortgage debt eligible for tax relief had been set at a constant of 0.73 . However, with the abolition of MIRAS the variable TMIRAS is zero from 2000 Q 2 . The effective rate of return on alternative investments varies considerably, ranging from full taxation of conventional gilts to tax subsidies on savings for pensions. However, some evidence on effective rates of return suggested a differential of around I/2 per cent on investments with an assumed nominal pre-tax return of 8 per cent per year. Thus the effective tax rate is 6.25 per cent or 0.25 times the basic rate. The proportion of mortgage borrowing in total housing finance is calculated in stock terms, i.e. the ratio of the stock of mortgage lending to gross physical wealth.

No.	Name	Description	Unit	Source	Identifier
0738	OWC	Owner occupancy rate	$\%$	ODPM	-

Model equation: Exogenous variable
Comment: Table 8.I, Housing Statistics Annual Volume.

No.	Name	Description	Unit	Source	Identifier
0739	UDEN	Union density (constant from 1980q4)	$\%$	HMT	-

Model equation: Exogenous variable

## Comment

This is sourced from the Department of Employment Gazette but is set constant from 1980Q4, it is likely that this variable proxies structural changes in the labour market prior to this date.

No.	Name	Description	Unit	Source	Identifier
0741	TAX	Tax component of RPCOST, 200I=100	Index	HMT	-

Model equation: Technical Relationship
TAX $=\quad 100[60$ TPROD / 4II3 + 40 TXFUEL / 55II. 5 ]/(. 000454 GVA)

No.	Name	Description	Unit	Source	Identifier
0742	HD	Housing depreciation index in RPI	Index	ONS	CHOO

Model equation: Technical Relationship

$$
\begin{aligned}
\mathrm{HD}= & \mathrm{gHD} * \mathrm{APH} / \mathrm{gAPH} \\
& \text { if } \mathrm{T} \geq \mathrm{TZ}(1995 \mathrm{Q} 2)
\end{aligned}
$$

Comment: Housing depreciation was introduced into the RPI in February 1995.

## GROUP EIGHT: THE NORTH SEA

In this group, production and trade is considered at an aggregate level. Trade flows of oil in volume terms are determined by assuming that exports, XOIL, can be modelled as a fixed proportion of output of North Sea oil. Import volumes, MOIL, are determined as the residual of the demand and supply identity i.e. the equation is essentially one for net oil trade.

No.	Name	Description	Unit	Source	Identifier
0801	TDOIL	Total domestic demand for oil	$£ M$, CVM	ONS	UJAD+BPIX-
				BOXX	

Model equation: Behavioural Equation

$$
\begin{align*}
& \operatorname{Ln} \text { TDOIL }=\mathrm{g} \operatorname{Ln} \text { TDOIL }-0.22 \text { *g Ln (TDOIL / NNSGVA) }-0.05 \mathrm{I} * \operatorname{Ln}(\text { PBRENT/ (P*RXD)) }  \tag{4.6}\\
& +1.06 \mathrm{~g}(\mathrm{I}-\mathrm{g}) \operatorname{Ln} \text { NNSGVA }-0.0014 * T I M E+0.08 \mathrm{I} * \text { CODUM -0.59 -0.23*DD86I } \tag{3.2}
\end{align*}
$$

$P=\quad($ GDPME - BPAE - NSGVA * PBRENT $/(17.68 *$ RXD $)) /($ NNSGVA)
Estimation period: 1972QI to 2005Q3
$\mathrm{R}^{2}=0.34 \quad$ Normality $\mathrm{CHI}^{2}=4.0$
SE $=0.069$
Hetero F $(1,133)=0.17$
$\operatorname{LMF}(4,124)=1.87$

## Summary of Equation Properties

Static long-run solution:
Ln TDOIL $=\operatorname{Ln}$ NNSGVA - 0.22*Ln (PBRENT/ (P*RXD) - 0.0014 TIME
Elasticity of TDOIL with respect to a I\% increase in:

	Q1	Q5	Q9	Long-run
Relative Prices (P)	-0.000	-0.160	-0.200	-0.220
Output (NNSGVA)	0.000	1.130	1.050	1.000

## Comment

This equation models domestic demand for oil in terms of the relative price of oil, an activity indicator (Non-North Sea GVA) and a negative time trend to capture greater technological efficiency in the use of oil. The time trend implies an exogenous reduction in the demand for oil of about $0.6 \%$ per annum.

Further Documentation: MSG(95) 5

No.	Name	Description	Unit	Source	Identifier
0802	NSGVA	GVA in North Sea oil \& gas extraction	£M, CVM	ONS	UJAD

Model equation: Exogenous variable
Comment: The Department for Trade and Industry produce medium-term projections for oil output.

No.	Name	Description	Unit	Source	Identifier
0803	XOIL	Exports of oil (volume)	$£ M$, CVM	ONS	BOXX

Model equation: Technical Relationship
XOIL $=\quad 0.80 *$ NSGVA

Comment: Oil exports are calibrated as an exogenous proportion of output.

No.	Name	Description	Unit	Source	Identifier
0804	PXOIL	AVI for exports of oil	Index	ONS	$100^{*}$
				(ELBL/BOXX)	

Model equation: Technical Relationship
Ln PXOIL = Ln [100 * PBRENT/ (16.98 * RXD)]

No.	Name	Description	Unit	Source	Identifier
0805	MOIL	Imports of crude oil and oil products	$£ M$, CVM	ONS	BPIX

Model equation: Technical Relationship
MOIL $=\quad$ TDOIL + XOIL - NSGVA

Comment: Determined as a residual given domestic demand, exports and North Sea GVA.

No.	Name	Description	Unit	Source	Identifier
0806	PMOIL	AVI for imports of oil	Index	ONS	$100^{*}$
				(ENXO/BPIX)	

Model equation: Technical Relationship
$\operatorname{Ln}$ PMOIL $=\operatorname{Ln}[100 *$ PBRENT/ (16.98*RXD)]

No.	Name	Description	Unit	Source	Identifier
0807	NSGTP	North Sea Gross Trading Profits: PNFCs $£ M$	ONS	CAGD	

Model equation: Technical Relationship
NSGTP $=$ NSGVA * PBRENT $/($ OILBASE $*$ RXD $)$

No.	Name	Description	Unit	Source	Identifier
0809	PBRENT	Brent crude oil price (\$ per barrel)	$\$$	DST	OILBREN

Model equation: Exogenous variable

## GROUP NINE: PUBLIC SECTOR EXPENDITURE

This group deals with the expenditure side of the public sector accounts, separately identifying CG and LA expenditures on wages and salaries, procurement, capital formation and subsidies and grants. It also contains the equations for public sector debt interest payments and equations for CG and LA employment. Most public expenditure variables are non-seasonally adjusted.

No.	Name	Description	Unit	Source	Identifier
0901	CGWS	CG compensation of employees	$£ M$	ONS	QWPS

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
0902	PCOTC	Payable company tax credits	$£ M$	ONS	MDXH

Model equation: Exogenous variable
Comment: Scored as public spending (subsidies on production in the National Accounts), see also the comment for V0954.

No.	Name	Description	Unit	Source	Identifier
0903	CGP	CG procurement expenditure	$£ M$	ONS	QWPT

Model equation: Exogenous variable

## Comment

Procurement is defined as all current expenditure on goods and services other than pay. It includes the purchase of all goods and services other than fixed assets and stocks, including the purchase of services from NHS trusts. Procurement excludes expenditure on dual use military equipment that under ESA95 is classified as fixed capital formation. It also excludes expenditure on further and higher education colleges.

No.	Name	Description	Unit	Source	Identifier
0904	LASUBP	LA subsidies on products	$£ M$	ONS	ADAK-LIUC

Model equation: Technical Relationship

$$
\text { LASUBP }=\mathrm{g} \text { LASUBP } * \text { PGDP } / \mathrm{g} \text { PGDP }
$$

No.	Name	Description	Unit	Source	Identifier
0905	NPACG	CG net acquisitions of non-produced   non-financial assets	$£ M$	ONS	NMFG

Model equation: Technical Relationship
NPACG $=g$ NPACG
Comment: Non-produced non-financial assets are typically land.

No.	Name	Description	Unit	Source	Identifier
0906	CGI£	Total Central Government GFCF	$£ M$	ONS	NMES

Model equation: Exogenous variable

## Comment

Central Government gross fixed capital formation (GFCF) comprises the acquisition of fixed assets, both tangible and intangible. Tangible assets include buildings and other structures, machinery and equipment (including vehicles) and cultivated assets. Intangible assets include computer software. Under the new accounting system, dual use military equipment (ie purchases of capital that could have a civilian use, eg hospitals and their equipment, airfields and buildings) is now scored as capital formation. GFCF is net of the sale of assets whose acquisition is considered to be fixed capital formation. It does not allow for capital depreciation (V0924) nor does it include the sale of special assets, i.e. privatisation of public utilities. Investment by NHS trusts was scored as public corporations investment but would now be included in the CG total.

No.	Name	Description	Unit	Source	Identifier
0907	CGTSUB	Total subsidies paid by CG	$£ M$	ONS	NMCD

Model equation: Technical Relationship (identity)
CGTSUB $=$ CGSUBP + CGSUBPR

Comment: Subsidies on products and production, GVA at basic prices excludes only the former.

No.	Name	Description	Unit	Source	Identifier
0908	CGSB	CG net social benefits to households	$£ M$	ONS	GZSJ

Model equation: Technical Relationship

$$
\begin{aligned}
\text { CGSB }= & \text { LCGRPE }+ \text { CSS }+ \text { WFTCPE }+7.25 * 0.013 * \text { UPRAT*KID } \\
& +[(0.4537 * 0.116+0.5668) *(1+0.7) * \text { NOPENS }+702.5] * \text { MRATE } \\
& + \text { MILAPM }+ \text { MILAPME }+ \text { VTRCS }+ \text { WTCCTC } \\
\text { MRATE }= & 0.25^{*}\left(1+\mathrm{g}+\mathrm{g}^{2}+\mathrm{g}^{3}\right) * \text { UPRAT }+0.375 *\left(\mathrm{Q} 2+\mathrm{Q} 3 \mathrm{~g}+\mathrm{Q} 4 \mathrm{~g}^{2}+\mathrm{Q} 1 \mathrm{~g}^{3}\right)(\mathrm{I}-\mathrm{g}) * \text { UPRAT }
\end{aligned}
$$

## Comment

Under ESA95 CG social benefits includes social security benefits in cash, unfunded social benefits and social assistance benefits in cash which includes income tax reliefs such as mortgage interest relief, life assurance premium relief, working families tax credit and the working and children's tax credits.

The first term of this equation represents current grants expenditure on selective employment measures and other non-social security current grants. The second term in the equation represents cyclical social security payments. The third term represents child benefit, the coefficient 7.25 is the weekly rate of child benefit in the base year (1989/90).

The fourth term represents benefits to those other than the unemployed. The coefficient 0.116 is the proportion of pensioners on income support and 0.5668 is the quarterly rate of a single person's pension. 0.26 represents other state benefits as a proportion of single person pensions. Other state benefits, which include invalidity benefit and attendance allowance, accrue mainly to those of pensionable age and thus can be aggregated and expressed as a fraction of pensioner benefits. The constant term, 702.5, represents other benefits that are not explicitly identified e.g. statutory sick and maternity pay. The uprating factor MRATE is designed to give a smooth quarterly path through the financial year.

The final term represents tax reliefs that under ESA95 score as public expenditure.
Further Documentation: MRG(90) 10

No.	Name	Description	Unit	Source	Identifier
0909	UPRAT	Uprating factor for non-cyclical   social security benefits	Index	HMT	

Model equation: Technical Relationship
UPRAT $=g$ UPRAT $g^{2}\left[Q 1+Q 3+Q 4+Q 2((I+2 g) P R) /\left(g^{4}(I+2 g) P R\right)\right]$

## Comment

The Department for Work and Pensions publishes the factors used for benefit upratings in the Departmental Report.

No.	Name	Description	Unit	Source	Identifier
0910	DIPNSC	Debt interest payments on Natl Savings	$£ M$	ONS	XACX

Model equation: Technical Relationship

$$
\begin{aligned}
\text { DIPNSC }= & g \text { DIPNSC }+[0.4 * y(\text { RNS })+0.5 * y(R N S /(I-\text { TPBRZ })) \\
& +0.1 *(1-g) \text { PR/g PR }] g(1-g) * \text { NATSAV } \\
& \left.\left.+g^{2} \text { NATSAV[\{g }(1-g) y(R N S /(I-\text { TBPRZ })) / 2.5\right\}+0.16(1-g)\{(1-g) P R / g P R\}\right]
\end{aligned}
$$

## Comment

The equation for interest on National Savings uses a flow type specification covering both ordinary instruments and index linked issues. The equation is structured so that interest in period $t$ equals interest in the previous period plus interest on new stock plus the change in interest on existing variable rate stock, plus the change in interest on existing index-linked stock.

The lagged dependent variable captures the previous period's interest. The interest on issues comprises interest on conventional issues, half of which attracts tax at the standard rate and interest on indexed National Savings, which are assumed to be about 10 per cent of the total. Forty per cent of the stock of national savings is assumed to be floating rate. The third term in the equation captures the change in interest on floating rate products. The final term captures the change in the accrued uplift on index-linked stock.

No.	Name	Description	Unit	Source	Identifier
09 II	DIPLDC	Debt interest payments on conventional   gilts	$£ M$	ONS	CUEM-CMSU

Model equation: Technical Relationship
DIPLDC $=\mathrm{g}$ DIPLDC -g REDOTH
$+g y[1.0 * R L+0.0 * R S] g(R E D G I L T+d G I L T-d I L G I L T)$

## Comment

This is the main debt interest flow of central government. Since these issues are fixed coupon instruments, the equation uses a first difference specification. This relates interest payments to gilt sales. A weighted average of long and short rates acts as a proxy for the coupon rate on conventional gilts. These weights can be adjusted to reflect the slope of the yield curve and expected maturity of gilt issues.

No.	Name	Description	Unit	Source	Identifier
0912	DICGOP	Total CG debt interest payments to   persons and overseas	$£ M$	ONS	NMFX

Model equation: Technical Relationship

```
DICGOP = DIPNSC + DIPLDC + IILG + ILGUP
 \(+((1+(R S-0.14) / I 00) \wedge .25-I) *\) CGOD
```

$$
\begin{aligned}
& +\left((I+(R S-0.43) / 100)^{\wedge} .25-I\right) * \text { TBILLS } \\
& +\left((1+(R S+0.26) / 100)^{\wedge} .25-I\right) * \text { FLOATER }(-I) \\
& +\left((I+(R S-2.47) / 100)^{\wedge} .25-I\right) * \text { TXCERT(-I) } \\
& +((I+(R S+0.43) / 100) \wedge .25-I) *(\text { FLEASGG }-70) \\
& + \text { DITHER ; }
\end{aligned}
$$

## Comment:

This equation aggregates the major elements of central government debt interest payments and adds terms that represent payments on Treasury Bills. Interest on foreign currency debt is captured by the equation's residual.

No.	Name	Description	Unit	Source	Identifier
0913	IILG	Debt interest on index-linked gilts	$£ M$	ONS	CMSU

Model equation: Technical Relationship
IILG $=\quad \operatorname{IILG}(-2)^{* P R}(-3) / P R(-5)+2 *\left((I+\operatorname{RILG}(-I) / I 00)^{\wedge} 0.25-I\right)^{* d I L G I L T(-I)}$

## Comment

Central Government disbursements on index-linked gilts have two components: the interest payment itself (IILG), and the accrued uplift (ILGUP, V0962). Interest payments are modelled using an equation in differences. The first term represents revaluations (IILG) of last quarter's interest payments, made at six-monthly intervals, in line with the RPI, whilst the second represents interest on the net new issue. RILG is the interest rate on new issues (VI407).

No.	Name	Description	Unit	Source	Identifier
0914	AEG	Aggregate External Finance from CG to	$£ M$	HMT	
	LA (inc. NNDR grant)				

Model equation: Technical Relationship
AEG $=\quad 0.8 *[$ LATSUB $+0.068 *$ LASBHH $-0.75 *$ LAVAT $+0.987 *($ LAWS + LAPR $)$ +0.525 * (DILAPR + DILACG + DILAPC) -1.3 * DIRLA]

## Comment

This equation has been specified in order that one can differentiate between National NonDomestic Rate grant and NNDR receipts. This equation used to be programmed with a time switch to cope with the regime shift.

No.	Name	Description	Unit	Source	Identifier
0915	LALEND	LA net lending to personal sector	$£ M$	ONS	ADDU

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
0916	KLA	LA capital grants	$£ M$	ONS	NMNL

Model equation: Technical Relationship
$\mathrm{KLA}=\quad \mathrm{PIF} \mathrm{g}{ }^{4}(\mathrm{KLA} / \mathrm{PIF})$

No.	Name	Description	Unit	Source	Identifier
0917	CGCGLA	Total CG grants to LAs'	$£ M$	ONS	QYJR

Model equation: Technical Relationship

```
CGCGLA = AEG
 \(+\left(0.25 * P R / g^{4} P R+0.75 * P R E N T / g^{4}\right.\) PRENT \() * 1.024 g^{4}(C G C G L A-A E G)\)
```


## Comment

Total CG current grants to LAs are modelled as the sum of the Aggregate External Finance and non-AEF grants. The main non-AEF grants are in respect of housing benefit, council tax benefit and mandatory student awards. The non-AEF grants are uprated in line with a weighted sum of the RPI and its housing component.

No.	Name	Description	Unit	Source	Identifier
0918	LASBHH	LA social benefits to households	$£ M$	ONS	GZSK

Model equation: Technical Relationship
LASBHH $=\quad\left(0.25 * P R / g^{4} P R+0.75 *\right.$ PRENT/ $g^{4}$ PRENT $) * I .047 g^{4} L A S B H H$

## Comment

The main LA current grants to households are housing benefit and mandatory student awards. Most housing benefit is financed by grant from central government but an increasing proportion is financed from the housing revenue account. All mandatory student awards are financed by central government grant.

No.	Name	Description	Unit	Source	Identifier
0919	KCGLA	Capital grants by CG to LA's	$£ M$	ONS	NMGR+NMGT

Model equation: Technical Relationship
KCGLA $=\quad$ PIF g4 (KCGLA / PIF)

No.	Name	Description	Unit	Source	Identifier
0920	LAMISE	LA miscellaneous expenditure	$£ M$	ONS	LSIB

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
0921	ECNET	Net EC contributions (BoP basis)	$£ M$	ONS	-FKKL-FKIJ

Model equation: Technical Relationship
ECNET $=\quad[1-0.5(\mathrm{~g}$ ECUPO/ECUPO -I$)] \mathrm{g}$ ECNET

| No. | Name | Description | Unit | Source |
| :--- | :--- | :--- | :--- | ---: | Identifier

Model equation: Exogenous variable

No.	Name	Description	Unit	Source
0923	UPLIFT	Uprating factor for cyclical   Social security benefits	Index	HMT

Model equation: Technical Relationship

```
UPLIFT = g}\mp@subsup{g}{}{2}(\textrm{QI}+Q3+Q4+(I+2g)*PRAV*Q2/g (I + 2g)* PRAV)*g UPLIFT
 if T \geq TZ (I990Q2)
PRAV = 0.I5 PR + 0.85 RROSSI
```

No.	Name	Description	Unit	Source	Identifier
0924	RCGIM	CG non-trading capital consumption	$£ M$	ONS	NSRN

Model equation: Exogenous variable

## Comment

Non-trading capital consumption is added to current expenditure on goods and services to arrive at the measure of final consumption, representing the total cost of providing central government services as measured by the National Accounts.

No.	Name	Description	Unit	Source	Identifier
0925	NOPENS	Number of pensioners (inc. widows)	000 s	ONS	BDAE

Model equation: Exogenous variable (see V0908)

No.	Name	Description	Unit	Source	Identifier
0926	KCGPSO	Capital grants paid by CG to Private   Sector and overseas	$£ M$	ONS	ANNI

Model equation: Technical Relationship
KCGPSO $=\quad$ PIF $* g^{4}(\mathrm{KCGPSO} / \mathrm{PIF})$

## Comment

Capital grants are defined as unrequited payments regarded as paid into the capital accounts of recipients to finance capital expenditure, usually fixed capital formation. This variable comprises capital grants to the private and overseas sector e.g. the Fossil Fuel Levy is scored as a capital grant. CG capital grants to LAs are scored in KCGLA (V0919) while KCGPC (VOI209) scores capital grants to PCs.

No.	Name	Description	Unit	Source	Identifier
0927	ECG	CG non-trading employment (WFJ)	000 s	ONS	CULX(Q)

Model equation: Technical Relationship (freely estimated 64Q3-05Q3).
$\operatorname{Ln} \mathrm{ECG}=\quad 0.276 * \operatorname{Ln~CGG}+4.8035$

## Comment

Employment in central government is defined to include the following: HM Forces, NHS and other (approximately the Civil Service). Data need to be calculated manually when there are sectoral changes to prevent the switch being spread over two quarters.

No.	Name	Description	Unit	Source	Identifier
0928	LAWS	LA compensation of employees	$£ M$	ONS	QWRY
0929	LAPR	LA expenditure on procurement	$£ M$	ONS	QWRZ-NMKK
0930	LAl£	LA investment expenditure	$£ M$	ONS	NMOA

Model equation: Exogenous variables

No.	Name	Description	Unit	Source	Identifier
093 I	DILAPR	LAs debt interest payments to the	$£ M$	ONS	NUGW
		Private Sector and overseas			

Model equation: Technical Relationship
DILAPR $=\quad y\left[0.8^{* R S}+(I-0.8) * R L-0.3\right] * g S L A B$

## Comment

Interest payments by local authorities to central government and public corporations are separately identified (V0944 and V096I). A high proportion of LA market debt is at variable interest rates. The equation therefore uses a levels specification in which the interest payments are modelled by taking the stock of LA debt outstanding and multiplying this by the appropriate interest rate.

No.	Name	Description	Unit	Source	Identifier
0932	PCLEB	PCs investment in land and existing   buildings	$£ M$, CVM	ONS	DLWH

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
0933	NPALA	LA net acquisitions of non-produced   non-financial assets	$£ M$	ONS	NMOD

Model equation: Technical Relationship
NPALA $=\quad$ g NPALA

No.	Name	Description	Unit	Source	Identifier
0934	ELA	LA non-trading employment (WFJ)	000 s	ONS	CUAN(Q)

Model equation: Technical Relationship (freely estimated 93QI-05Q3).
$\operatorname{Ln} E L A=0.270 * \operatorname{Ln} C G G+5.024$

## Comment

Data need to be calculated manually where there are sectoral changes, like the transfer of Further Education colleges to household sector (April I993).

No.	Name	Description	Unit	Source	Identifier
0935	CGSUBP	CG subsidies on products	$£ M$	ONS	NMCB

Model equation: Technical Relationship
CGSUBP $=\mathrm{g}$ CGSUBP PGDP $/ \mathrm{g}$ PGDP

No.	Name	Description	Unit	Source	Identifier
0936	CGSUBPR	CG subsidies on production	$£ M$	ONS	NMCC

Model equation: Technical Relationship
CGSUBPR $=$ PCOTC + RLCOTC $+g(C G S U B P R-P C O T C-R L O T C)$ PGDP $/ \mathrm{g}$ PGDP

No.	Name	Description	Unit	Source	Identifier
0937	LASUBPR	LA subsidies on production	$£ M$	ONS	LIUC

Model equation: Technical Relationship
LASUBPR $=\mathrm{g}$ LASUBPR PGDP $/ \mathrm{g}$ PGDP

No.	Name	Description	Unit	Source	Identifier
0938	CGOTR	Other current grants	$£ M$	ONS	NMFC

Model equation: Technical Relationship

CGOTR $=\quad$ GNP4 + GDPM $£($ CGOTR $-G N P 4) / g$ GDPM $£$

## Comment

Under ESA95 this variable includes grants to institutions of further and higher education, grants to fund NHS pension increases (CGTPC) and the GNP fourth own resource (GNP4).

No.	Name	Description	Unit	Source	Identifier
0939	KID	No. of children receiving child benefit	000 s	ONS	BDAH

Model equation: Exogenous variable

## Comment

One of the key variables for CG social benefits (see V0908). Recent data are sourced from Inland Revenue and then linked to data using the ONS identifier BDAH that refers to Gt Britain only.

| No. Name | Description | Unit | Source | Identifier |
| :--- | :--- | :--- | :--- | ---: | ---: |
|  | 122 |  | Version Mar'08 |  |

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
0941	LATSUB	Total LA subsidies	$£ M$	ONS	ADAK

Model equation: Technical Relationship (Identity)
LATSUB = LASUBP + LASUBPR

## Comment

The main type of subsidies are for transport and economic development. Up until 1989-90 local authorities also subsidised council house rents.

No.	Name	Description	Unit	Source	Identifier
0942	CGMISP	CG miscellaneous payments	$£ M$	ONS	ANRS-ABIF

Model equation: Exogenous variable

## Comment

The variable represents the difference between the public expenditure concept of Privatisation Proceeds and the National Accounts measure of Cash Expenditure on Company Securities.

No.	Name	Description	Unit	Source	Identifier
0943	DICGPC	CG debt interest payments to PCs	$£ M$	ONS	GVHH-CPBA-
				GVHG	

Model equation: Exogenous variable

## Comment

This variable includes payments to PCs under the Exchange Cover Scheme. Since the privatisations of the 1980s these payments are now negligible. This variable also includes payments on PCs' holdings of CG debt.

No.	Name	Description	Unit	Source	Identifier
0944	DILACG	LA debt interest payments to CG	$£ M$	ONS	GVHA

Model equation: Technical Relationship
DILACG $=0.985^{*} \mathrm{~g}$ DILACG $+\mathrm{y}\left(0.09^{*} \mathrm{RS}+0.93^{*} \mathrm{RL}+0.5\right) \mathrm{g}[(\mathrm{I}+0.0 \mathrm{I} 5)-\mathrm{g}]$ SLCGLA

## Comment

Almost all of LA borrowing from central government is from the Public Works Loan Board and is fixed rate. This is captured by the lagged dependent variable. However, I. 5 per cent of the total is assumed to be rolled over each quarter, and this is captured, along with the interest on new debt, by the term in the stock of borrowing, SLCGLA, times the interest rate.

No.	Name	Description	Unit	Source	Identifier
0945	DIPCCG	PC debt interest payments to CG	$£ M$	ONS	GVHC-ZYHY

Model equation: Technical Relationship
DIPCCG $=\mathrm{g}$ DIPCCG $+0.2^{*} \mathrm{~g}^{2}$ SPCBCG $(\mathrm{I}-\mathrm{g})$ y $(\mathrm{RS})+y$ RL $* g(\mathrm{I}-\mathrm{g})$ SPCBCG

## Comment

Most PC debt is fixed rate, and this is captured by the lagged dependent variable. The second term captures the change in interest on floating rate debt. The third term captures the interest on new debt.

No.	Name	Description	Unit	Source	Identifier
0946	SLCGLA	Stock of LA debt held by CG	$£ M$	ONS	ADHC+ADKF
				+ ADKE	

Model equation: Technical Relationship
SLCGLA $=\mathrm{g}$ SLCGLA + LCGLA

No.	Name	Description	Unit	Source	Identifier
0947	DIPCLA	PC debt interest payments to LAs	$£ M$	ONS	GVHD-ZYHZ
0948	DICGLA	CG debt interest payments to LAs	$£ M$	ONS	NUHC

Model equation: Exogenous variables

No.	Name	Description	Unit	Source	Identifier
0949	LASC	LA social contributions	$£ M$	ONS	GCMN

Model equation: Technical Relationship
LASC $=0.0040250 *$ WFP

No.	Name	Description	Unit	Source	Identifier
0950	NPRIVP	Net privatisation proceeds	$£ M$	ONS	-ABIF

Model equation: Exogenous variable
Comment: Includes sales of debt.

No.	Name	Description	Unit	Source
0951	LCGOS	CG net lending overseas	$£ M$	ONS

Model equation: Exogenous variable

No.	Name	Description	Unit	Source
0952	LCGPR	CG net lending to the Private	$£ M$	ONS

Model equation: Exogenous variable
Comment: The main component is student loans. Sales of debt are scored as privatisation proceeds.

No.	Name	Description	Unit	Source	Identifier
0953	ILGCSH	Index-Linked Gilts Cash uplift	$£ M$	ONS	NMRB-NMQZ

Model equation: Exogenous variable
Comment: This represents the payment of the accrued interest on index-linked gilts on redemption.

No.	Name	Description	Unit	Source	Identifier
0954	RLCOTC	Reduced liability company tax   credits	$£ M$	ONS	JPPT-MDXH

Model equation: Exogenous variable
Comment: Scored as public spending (subsidies on production) in the National Accounts.

No.	Name	Description	Unit	Source	Identifier
0955	WFTCNT	WFTC scoring as negative tax	$£ M$	ONS	LIBJ-MDYM

Model equation: Exogenous variable

No.	Name	Description	Unit	Source
0956	KPSCG	Capital grants from Private   Sector to CG	$£ M$	ONS

Model equation: Exogenous variable

| No. | Name | Description | Unit | Source |
| :--- | :--- | :--- | :--- | ---: |$\quad$ Identifier

Model equation: Exogenous variable

| No. | Name | Description | Unit | Source |
| :--- | :--- | :--- | :--- | ---: | Identifier

Model equation: Exogenous variable
Comment: Local authority other transfers to households (e.g. NNDR refunds)

No.	Name	Description	Unit	Source	Identifier
0959	LANNDR	LA payments of NNDR	$£ M$	ONS	CQOQ

Model equation: Exogenous variable

No.	Name	Description	Unit	Source
096 I	DILAPC	LA debt interest payments to $P C s € M$	ONS	Identifier

Model equation: Exogenous variable

| No. | Name | Description | Unit | Source |
| :--- | :--- | :--- | :---: | ---: |$\quad$ Identifier

Model equation: Technical Relationship
ILGUP $=$ REVIG8(-I)*(RPI8-I) + REVIG3(-I)*(RPI3-I)
*W RPI8 $=\quad(2 / 3 * P R(-2)+\mathrm{I} / 3 * \operatorname{PR}(-3)) /(2 / 3 * P R(-3)+\mathrm{I} / 3 * P R(-4)) ;\{8 \mathrm{~m}$ lag uplift $\}$
$* W$ RPI $3=(2 / 3 * P R \quad+1 / 3 * P R(-1)) /(2 / 3 * P R(-1)+1 / 3 * P R(-2)) ;\{3 \mathrm{~m}$ lag uplift $\}$

## Comment

This equation applies the uplift factor defined in terms of the RPU to the previous periods revalued stock of index-linked gilts. The first index-linked gilts were issued in 1980 and recently around 25 per cent of gross gilt issues have been index-linked. As a result an increasing proportion of central government debt is index linked, and so the accrued uplift has become an important variable.

No.	Name	Description	Unit	Source
0963 CSS	Cyclical Social Security	$£ M$	ONS	Identifier

Model equation: Technical Relationship

$$
\begin{aligned}
\text { CSS }= & {[0.15 * 0.45 I I+(I-0.15) * 0.4537] } \\
& {[1.36 * U+1000 * \exp \{-0.869+0.106 *(\min (\mathrm{~T}-33,73) / 4+0.375)\}] * \text { MRATEI } } \\
\text { MRATEI }= & 0.25 *\left(I+g+g^{2}+g^{3}\right) \text { UPLIFT }+0.375 *\left(\mathrm{Q} 2+\mathrm{Q} 3 \mathrm{~g}+\mathrm{Q} 4 \mathrm{~g}^{2}+\mathrm{QI} \mathrm{~g}^{3}\right)(\mathrm{I}-\mathrm{g}) * \text { UPLIFT }
\end{aligned}
$$

## Comment

Cyclical Social Security consists of unemployment benefit and income support paid to all claimants except the elderly. This equation was estimated on annual data (1978-1991) with a quarterly form being subsequently calculated. The unemployment effect of $£ 325 \mathrm{~m}$ in (1993-94 prices) for every extra 104,00 unemployed has been imposed. The trend growth rate of cyclical social security was freely estimated. MRATEI uprates benefit expenditure in line with the published uprating factor. It is defined in such a way as to ensure a smooth quarterly path.

No.	Name	Description	Unit	Source
0964 GNLDF	Lottery financed expenditure	$£ M$	ONS	Identifier

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
0965	LANDRAA	LA NNDR accruals adjustment	$£ M$	ONS	CULD-CCXN

Model equation: Exogenous variable

| No. | Name | Description | Unit | Source |
| :--- | :--- | :--- | :--- | ---: |$\quad$ Identifier

Model equation: Technical Relationship

WFTCPE $=\mathrm{g}$ WFTCPE PRAV $/ \mathrm{g}$ PRAV
PRAV $=0.15 \mathrm{PR}+(\mathrm{I}-0.15)$ RROSSI $\quad$ If $\mathrm{T} \geq 2003 \mathrm{Q} 2$
Comment: Working Families Tax Credits paid to non-taxpayers

No.	Name	Description	Unit	Source
0968	ASSETSA	Fixed asset sales by Public Sector $£ M$	HMT	Identifier

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
0969	EUVAT	VAT payments to the EU	$£ M$	ONS	HCML+FSVL

Model equation: Technical Relationship
EUVAT $=0.0325 *$ VREC $/\left(0.8267 * \mathrm{~g}^{4}\right.$ ECUPO $)$

No.	Name	Description	Unit	Source
0970	OSGG	GG Gross Operating Surplus	$£ M$	ONS

Model equation: Technical Relationship (Identity)
OSGG $=$ RCGIM + RLAIM

No.	Name	Description	Unit	Source	Identifier
097	EESCLA	Employee contributions to LA   unfunded pension schemes	$£ M$	ONS	NMWM
Model equation:Technical Relationship					

EESCLA $=0.001271 * W F P$

| No. | Name | Description | Unit | Source |
| :--- | :--- | :--- | :---: | ---: | Identifier

Model equation: Exogenous variable

No.	Name	Description	Unit	Source
0973	TME	Total Managed Expenditure	$£ M$	ONS

Model equation: Technical Relationship (Identity)
TME $=\quad$ PSCE + DEP + PSNI

No.	Name	Description	Unit	Source
0974	CGASC	CG actual social contributions	$£ M$	ONS

Model equation: Technical Relationship
CGASC $=0.01097 *$ WFP

## Comment

These are actual contributions by central government to notional and unfunded pension schemes: as compared with imputed social contributions (see comment for VIO33).

No.	Name	Description	Unit	Source
0976	CGNCGA	CG net current grants abroad	$£ M$	ONS

Model equation: Technical Relationship
CGNCGA = ECNET + TROD

No.	Name	Description	Unit	Source
0977	CGSTOCK	CG net capital Stock, all fixed	$£ B n$	ONS
assets				

Model equation: Technical Relationship
*W DEPDEL $=(T F E £ / T F E) /(T F E £(-I) / T F E(-I))$
*P CGDEP $=0.0072118$

CGSTOCK $=(I-$ CGDEP $) *(C G S T O C K(-I) * D E P D E L ~+~ C G I £) ~$

No.	Name	Description	Unit	Source	Identifier
0978	LASTOCK	LA net capital Stock, all fixed   assets	$£ B n$	ONS	CIXL

Model equation: Technical Relationship

```
LASTOCK = (I - LADEP)*(LASTOCK(-I)*DEPDEL + LAIE)
```

No.	Name	Description	Unit	Source	Identifier
0985	DITHER	Other CG debt interest	$£ M$	HMT	-

Model equation: Exogenous variable

No. Name	Description	Unit	Source	Identifier
				Version Mar'08

Model equation: Exogenous variable

## GROUP I0: PUBLIC SECTOR RECEIPTS

This is a large group that covers all taxes, National Insurance Contributions and debt interest receipts. Virtually all of the equations for receipts are classified as technical relationships, reflecting the view that taxes are involuntary.

No.	Name	Description	Unit	Source	Identifier
1001	TSD	Stamp Duty receipts	$£ M$	ONS	ACCl

Model equation: Technical Relationship
TSD =
$[0.76$ * EQPR/ g EQPR +0.24 * PD * APH/ (g PD *g APH $)$ ] gTSD

## Comment

This variable aggregates stamp duty on shares and on land and property. The equation is a quasitechnical relationship that is driven by equity prices and housing turnover.

No.	Name	Description	Unit	Source
1002	TYEM	Accruals of tax on employment income	$£ M$	ONS

Model equation: Technical Relationship
TYEM $=\quad$ TEY + PART

Where:
I. TAXES ON EMPLOYMENT INCOMES (TEY)

TEY $=\quad[\mathrm{WTX}(T P A L) *$ TPLR

+ WTX (LRB + TPAL) * (TPBRZ - TPLR)
$+\mathrm{WTX}(\mathrm{LRB}+\mathrm{BRB}+\mathrm{TPAL}) *(T P H R-T P B R Z)] * W F P$
$\operatorname{Ln}(\mathrm{WTX}(\mathrm{X}))=-3 * X / W+\operatorname{Ln}\left[1+2 * X / W+1.5 *(X / W)^{2}\right]$
$W=\quad 1000 * W F P /(E T-E S)$

```
PART = [0.46 * 0.5668 * NOPENS * MRATE - I.989 * TPAL
 + (0.I * 702.5 * MRATE - 0.0375 * TPAL) * ALPH2
 -((0.1896 + 0.72I9)* TPAL - (0.332 *(0.8* 702.5 +
 +((I-0.3)*U + 0.16*NOPENS)*0.4537)+0.3*0.45II*U)*MRATE)* BETA2]
 * TPBRZ
MRATE = 0.25* (I+g+g' + g})*\mathrm{ UPRAT + 0.375* (Q2+Q3g +Q4g' +QIg}\mp@subsup{)}{}{2}*(I-g) UPRAT
TPAL = TPALA if T < TZ (I994Q2)
TPALA = 0.3820 * TPMCA + 0.976*TPSNA + 0.039 * TPAG
TPAL = TPALB if T \geqTZ (I994Q2)
TPALB = 0.3056*TPMCA + 0.976 * TPSNA + 0.039 * TPAG
ALPH2 = 0 if T < TZ (I983Q2)
ALPH2 = I if T\geqTZ (1983Q2)
BETA2 = 0 if T < TZ (I982Q3)
BETA2 = I if T \geqTZ (1982Q3)
```

The equation for TEY is derived by evaluating integrals representing accruals of tax at the lower, basic and higher rates of income tax given the gamma distribution. Thus:
$n(X)=\quad A * X^{2} * \exp (-B * X)$
$n(X)=\quad$ number of taxpayers with income $X$.
The parameters $A$ and $B$ are defined in terms of total employees in employment and average earnings from the relationships
$n(X) X d X=$ total wages and salaries
$n(X) d X=$ total employees in employment.

The equation for the accruals of tax on employment incomes may then be derived by evaluating the following expression and simplifying.

```
\(\operatorname{TEY}=\quad \int_{b}^{z}\{\operatorname{TPLR}(x-b)\} n(x) d x\)
 \(+\int_{z}^{h}\{\operatorname{TPLR}(\mathrm{z}-\mathrm{b})+\operatorname{TPBRZ}(\mathrm{x}-\mathrm{z})\} \mathrm{n}(\mathrm{x}) \mathrm{dx}\)
 \(+\int_{h}^{\infty}\{\operatorname{TPLR}(\mathrm{z}-\mathrm{b})+\operatorname{TPBRZ}(\mathrm{h}-\mathrm{z})+\operatorname{TPHR}(\mathrm{x}-\mathrm{h})\} \mathrm{n}(\mathrm{x}) \mathrm{dx}\)
b \(\quad=\) personal allowance for the representative tax payer
\(z \quad=\quad b+\) LRB
\(h \quad=\quad z+B R B\)
LRB \(\quad=\) lower rate band width \(£\), quarterly rate
BRB = basic rate band width \(£\), quarterly rate
TPLR \(=\) lower rate of income tax.
TPBRZ \(=\) basic rate of income tax.
TPHR \(=\) higher rate of tax
```

This equation was modified in May 1992 to take account of the introduction of the lower rate of income tax in the 1992 Budget. The first integral in the expression above represents tax accruals by lower rate tax payers, the second accruals at the lower and basic rates by basic rate tax payers, and the third, accruals at the lower, basic, and higher rates by higher rate tax payers.

The first term in the Model equation represents accruals at the lower rate by all tax payers. The second terms represent accruals at the basic rate by basic and higher rate tax payers, whilst the third terms represent accruals at the higher rate.

The weights in TPAL are based on Inland Revenue estimates of the number of tax payers receiving each allowance. The time switch reflects the restriction of the married couples allowance to the lower rate in 1994Q2. The equation for PART (taxes on benefits) was calibrated on the basis of information supplied by the Inland Revenue.

Accruals of tax are assumed to iterate with tax allowances, pre-tax benefit incomes, and the basic rate. The equation identifies four elements of benefit that are subject to tax, state pensions, unemployment benefit, income support and statutory sick and maternity pay. The dating of the introduction of taxes on each benefit is handled via a series of time switches.

Further Documentation: MRG(90) 4, MRG(90) 9

No.	Name	Description	Unit	Source	Identifier
IO03	CCLACA	Climate change and aggregates levy	$£ M$	ONS	LNSU+MDUR+
	accruals adjustment			CJRY	

Model equation: Exogenous variable
$\left.\begin{array}{llllcr}\hline \text { No. } & \text { Name } & \text { Description } & & \text { Unit } & \text { Source } \\ \hline \text { IO04 } & \text { VREC } & \text { Net VAT receipts } & & £ M & \text { ONS }\end{array}\right)$ EYOO

Model equation: Behavioural Equation

$$
\begin{aligned}
\text { VREC }= & ((\text { VATFACI }(-I) * \operatorname{CDUR} £(-I)+\operatorname{VATFAC} 2(-I) *(\operatorname{C} £(-I)-\operatorname{CDUR} £(-I))) \\
& +0.686 * \operatorname{CGP}(-I)+0.968 * \operatorname{CGI} £(-I)+0.423 * \operatorname{IHH} £(-I) \\
& +0.78 *(0.1015 * \operatorname{GDPM}(-I))) * \operatorname{TVAT}(-I) /(I+\operatorname{TVAT}(-I))
\end{aligned}
$$

## Comment

VAT receipts are determined within a theoretical framework based on expenditure patterns. Receipts are broadly explained by five categories of expenditure: consumers' expenditure on durables, consumers' expenditure on non-durables, central government expenditure on procurement, central government investment, household investment and finally expenditure on exempt items that is modelled as a fixed share of money GDP. Assumptions regarding the proportion of expenditure in these categories that is subject to VAT is given in the proportions VATFACI and VATFAC2 which appear as Exogenous variables later in this group, and by the coefficients on the other three categories. Expenditure is simply multiplied by the respective proportion and totalled to give theoretical expenditure subject to VAT in a given year. This is then multiplied by the VAT rate to give the theoretically expected level of receipts, the lower rate of VAT that accounts for a small proportion of spending is accommodated via the coefficient. The shortfall between theory and practice i.e. the 'VAT gap' is handled via the adjustment setting on the equation.

No.	Name	Description	Unit	Source	Identifier
1005	EXDUTAC	Excise duty accruals adjustments	$£ M$	ONS	RUSD

Model equation: Technical Relationship
EXDUTAC $=\quad$ EXDUT $* g^{4}($ EXDUTAC/EXDUT $)$
EXDUT $=\quad$ VREC + TXALC + TXFUEL + TXTOB + OPT + TXMIS

## Comment

The main indirect taxes are VAT and duty paid on alcohol, fuel and tobacco. The equation relates the growth of accruals of indirect taxes to the growth of cash receipts.

| No. | Name | Description | Unit | Source |
| :--- | :--- | :--- | :--- | ---: | Identifier

## Model equation: Behavioural Equation

$$
\begin{aligned}
\operatorname{Ln} \text { TXALC }= & \operatorname{Ln}(P C E)+0.64 * \operatorname{Ln}(\mathrm{C})-0.00522 * \operatorname{time}(\mathrm{I} 97702)-4.5 \mathrm{I} 03 \\
& +0.0632 * \mathrm{Q} 2+0.142 \mathrm{I} * \mathrm{Q} 3+0.4228 * \mathrm{Q} 4-0.30822 *(\mathrm{ifeq}(\mathrm{I} 9830 \mathrm{I})-\mathrm{ifeq}(\mathrm{I} 98302))
\end{aligned}
$$

Estimation period: 1977Q2 to 2005Q4
$R^{2}=0.836^{*} \quad S E=0.032$

* dependent variable $=\operatorname{Ln}$ TXALC $-\operatorname{Ln}$ PCE $-0.64 * \operatorname{Ln} C$


## Comment

An estimate for aggregate alcohol elasticity was found by weighting each elasticity by its share of total alcohol duties. These income elasticities were taken from GES working paper No. 140 'Econometric Models of Alcohol Demand in the United Kingdom', they were -0.05, I.5I and 0.69 for beer, wine and spirits respectively. The elasticity for beer is a weighted average of a negative elasticity for 'on-trade' beer and a positive elasticity for 'off-trade' beer. Shares of alcohol duty averaged $0.40,0.28$ and 0.30 over 2002-2005, hence giving an overall estimate of 0.64 . Alcohol duties are seasonal, especially in Q4.

No.	Name	Description	Unit	Source	Identifier
1007	SIBICC	Total allowances on PNFCs investment   in industrial buildings	$£ M$	HMT	

Model equation: Technical Relationship
SIBICC $=\quad \mathrm{g}$ SIBICC + SIB $*$ ICC $£$

## Comment

This variable is computed as if all Private Non-Financial Corporations' (PNFC) investment were in industrial buildings. It is used in the equation for total capital allowances (CAPAL, VIOI6) where it is multiplied by 0.30 , which is assumed to be the proportion of PNFCs' total investment represented by industrial buildings.

No.	Name	Description	Unit	Source	Identifier
1008	EENIC	Employees' payments of NICs	$£ M$	ONS	AlHH-CEAN

Model equation: Technical Relationship

```
EENIC \(=0.01 *\left[H E E N I R * A L P H 0 * \exp (-3 * U L E R) *\left(1+2 * U L E R+1.5 * U L E R^{2}\right)\right.\)
 \(+\exp (-3 * \operatorname{LLER}) *\left(I+2 *\right.\) LLER \(+1.5 *\) LLER \(\left.^{2}\right)\)
 \(-(I-0.575)(1-0.75) *\left\{\exp (-3 * L L E R) *\left(1+2 * L L E R+I .5 * L^{2} E R^{2}\right)\right.\)
 \(\left.\left.-\exp (-3 * \operatorname{ULER}) *\left(\mathrm{I}+2 * \mathrm{ULER}+\mathrm{I} .5 * \mathrm{ULER}^{2}\right)\right\}\right] \quad *\) EENIR * WFP
ULER \(=0.001 * U L *(E T-E S) / W F P\)
LLER \(=0.001 * \operatorname{LL} *(E T-E S) / W F P\)
ALPHO = I if T \(\geq\) TZ (2003Q2)
```


## Comment

Both employees' National Insurance contributions (EENIC) and employers' contributions (EMPNIC) are modelled on the assumption of a gamma distribution for income, consistent with the approach adopted for modelling the tax on employment income component of the schedule E income tax equation (TYEM, VIOO2). The contributions equations comprise terms representing gross contributions on the assumption that all employers and employees are contracted-in to the State Earnings Related Pension Scheme (SERPS); and terms representing the notional rebate for those contracted-out of SERPS, which are deducted to calculate actual contributions.

Liability to National Insurance for employers and employees varies according to the level of employees' earnings. For employees' earning below the lower earnings limit (LL) no contributions are payable. The higher rate of employee NICs (HEENIR) was introduced in the 2002 Budget.

The equations for employees' and employers' contributions are based on evaluating relevant integrals representing notional gross contributions less contracted-out rebates assuming a gamma based income distribution:
$n(X)=\quad A * X^{2} * \exp (-B * X)$
$n(X)=\quad$ number of taxpayers with income $X$.
The parameters $A$ and $B$ are defined in terms of total employees in employment and average earnings from the relationships
$n(X) X d X=$ total wages and salaries
$n(X) d X=$ total employees in employment.

The equation for employees' contributions is then derived by evaluating the expression:

```
EENIC \(=\int_{L L}^{U L}\{\operatorname{EENIR}(\mathrm{x}-\mathrm{LL})\} \mathrm{n}(\mathrm{x}) \mathrm{dx}\)
 \(+\int_{U L}^{\infty}\{\) HEENIR \((x-U L)\} n(x) d x\)
 \(+\int_{U L}^{\infty}\{\operatorname{EENIR}(U L-L L)\} n(x) d x\)
 \(+\mathrm{a} *(\) EENIR- EEROUT \() *\left[\int_{L L}^{U L}\{\mathrm{x}-\mathrm{LL}\} \mathrm{n}(\mathrm{x}) \mathrm{dx}+\int_{U L}^{\infty}\{\mathrm{UL}-\mathrm{LL}\} \mathrm{n}(\mathrm{x}) \mathrm{dx}\right]\)
```


## Further Documentation

For details of related manipulation of the gamma distribution, see MRG(90) 4.

No.	Name	Description	Unit	Source	Identifier
1009	EMPNIC	Employers' payments of NICs	$£ M$	ONS	CEAN

Model equation: Technical Relationship

```
EMPNIC = 0.01 * EMPNIR * WFP
 [exp(-3*LLER)*(I + 3*LLER + 4.5*LLER 2}+4.5*LLER 3)
 - ALPHI * exp(-3*ULER)*(I + 2*ULER + I.5*ULER2)
 -(I-0.575) (I-0.6) {exp(-3*LLER)*(I + 2*LLER + I.5* LLER')
 - exp(-3*ULER)*(I + 2*ULER + I.5*ULER2})}
ULER = 0.001 * UL * (ET - ES) / WFP
LLER = 0.00I * LL * (ET - ES) / WFP
ALPHI = I if T < TZ (1985Q3)
ALPHI = 0 if T \geq TZ (1985Q3)
```


## Comment

See comment on EENIC (VIO08) for a description of the National Insurance system, and the gamma income distribution assumption underlying the equations for both employers' and employees' contributions.

The equation for employers' contributions is derived by evaluating the expression:

EENIC $=\int_{L L}^{\infty} E M P N I R * n(x) * x d x$

$$
\begin{aligned}
& \text { - ALPHI } * \int_{U L}^{\infty} \text { EMPNIR } * \mathrm{n}(\mathrm{x}) *(\mathrm{x}-\mathrm{UL}) \mathrm{dx} \\
& +\mathrm{a}^{*}(E E N I R-\text { EEROUT }) *\left[\int_{L L}^{U L}\{\mathrm{x}-\mathrm{LL}\} \mathrm{n}(\mathrm{x}) \mathrm{dx}+\int_{U L}^{\infty}\{U L-\mathrm{LL}\} \mathrm{n}(\mathrm{x}) \mathrm{dx}\right]
\end{aligned}
$$

where EMROUT is the contracted-out rate.
Here the first integral represents notional gross employers' contributions i.e. before contractedout rebate, under the system in operation since 1985Q4 when employers became liable to pay the full rate on all earnings above the upper earnings limit. This integral corresponds to the first line of the Model equation. The second integral (zero from 1985Q4 when ALPHI takes the value zero) allows for the pre-I985Q4 (ALPHI $=\mathrm{I}$ ) arrangements when employers paid no contributions on that part of each employees' earnings falling above the upper limit. This integral corresponds to the second line of the Model equation.

Finally the remaining terms in the expression (corresponding to the third and fourth terms of the Model equation) represent the notional contracted-out rebate. These take exactly the same form as the corresponding terms in the employees' contributions equation. All that differs is the contracted-in and contracted-out rates. In the Model equation the coefficient of 0.6 is used to represent the ratio EMROUT/EMPNIR.

## Further Documentation

For details of related manipulation of the gamma distribution, see MRG(90) 4.

No. Name	Description	Unit	Source	Identifier
1010 LL	Lower Earnings Limit for $\operatorname{NICs}(£, \mathrm{Q})$	$£$	HMT	-

Model equation: Technical Relationship
$L L=\quad g L L * g^{2}\left[Q I+Q 3+Q 4+Q 2 *(I+2 g) P R / g^{4}(I+2 g) P R\right]$

## Comment

The equation automatically uprates the lower earnings threshold in accordance with institutional arrangements.

No.	Name	Description	Unit	Source	Identifier
IOII	UL	Upper Earnings Limit for NICs $(£, \mathrm{Q})$	$£$	HMT	
Model equation:	Technical Relationship				

$\mathrm{UL}=\quad(\mathrm{TUL}+7.5) * \mathrm{LL}$
TUL $=-0.47$ if T > TZ 2000Q2
TUL $=-0.89$ if $T \geq$ TZ 200IQ2

No.	Name	Description	Unit	Source	Identifier
1012	TCACT	Advance Corporation Tax receipts	$£ M$	ONS	ACCN

Model equation: Exogenous variable
Comment: Advance Corporation Tax was abolished in April 1999. The new Corporation Tax regime is reflected in the equation for onshore mainstream corporation tax (VIOI5).

No.	Name	Description	Unit	Source	Identifier
1013	NSCTP	North Sea Corporation Tax Payments	$£ M$	ONS	DBJY

Model equation: Behavioural Equation
NSCTP $=0.29948 * N S G T P(-7)^{*}(T C P R O(-7)+S C(-7))-(T C P R O(-2)+S C(-2))^{*}$
(0.55334*TCACT(-2) + I.857I*NSROY(-2) + 0.I7629*PRT(-2))
$+409.4802-303.7928^{*}$ Q2
$+803 *$ ifeq $(19860 \mathrm{I})+626 *$ ifeq(I99704) $+606 *$ ifeq(199804) $+738 *$ ifeq(200I04)

Estimation period: I980Q4 to 2005Q3
$\mathrm{R}^{2}=0.792$
DW = 1.41
SE $=189.3$
Normality $\mathrm{CHI}^{2}=0.38[0.83]$
LM F $(4,86)=3.9[0.005]$
Comment: This receipts equation is broadly driven by North Sea gross trading profits. Royalty and ACT payments are deducted as these are allowable against profits. The equation was difficult to specify and estimate, it suffers from serial correlation.

No.	Name	Description	Unit	Source	Identifier
IOI4	TXFUEL	Hydrocarbon oils duty receipts	$£ M$	ONS	ACDD
		139			Version Mar'08

Model equation: Technical Relationship
TXFUEL $=$ GDPM $£ * \mathrm{~g}($ TXFUEL/GDPM $£)$

Comment: The series is assumed to grow in line with nominal GDP.

No.	Name	Description	Unit	Source
1015 NNSCTP	Onshore mainstream Corporation Tax   receipts	$£ M$	ONS	ACCD-ACCN-
				DBBD-DKGZ

Model equation: Technical Relationship
NB this technical relationship applies 1998Q4 and earlier.

```
XNNSCT = (I.23630*(distlag(INC(-I),4,I))
 - 0.75674*(distlag(TCACT,4,I) - distlag(NSACT,4,I)
 + CAPAL*distlag(TCPRO(-
```

    I),4,I)/4)
    - 0.019642*((distlag(CBIBC(-I),4,I)/4)*(distlag(INC(-I),4,I)
                                    - (distlag(TCACT,4,I) - distlag(NSACT,4,I))
                                    - CAPAL*distlag(TCPRO(-I),4,I)/4)) -
    1437)/4*Q2
    + (I - Q2)*XNNSCT(-I)
    $I N C=\quad$ TCPRO* $($ NNSCTP + NSCTP + PRT + NSROY + TCACT - NSGTP + SAVCO
+ I.73*NDIVHH + 0.25*DIPD)

NB this technical relationship applies after 1998Q4.

```
NNSCTP \(=((C T I * X N N S C T+C T 2 *(1.23630 * I N C(-I)\)
 \(-0.75674 *(T C A C T-N S A C T+(d i s t l a g(C A P A L, 4, I) * d i s t l a g(T C P R O(-I), 4, I) / 4)\)
 *(QI+Q2+Q3+Q4)/4)
 - 0.019642*CBIBC(-I)*(INC(-I) - (TCACT - NSACT)
 - (distlag(CAPAL,4,I)*distlag(TCPRO(-I),4,I)/4)
 *(Q1+Q2+Q3+Q4)/4) + 5250))
 *(I - ifle(I99804)) + ifle(I99804)*XNNSCT)
```


## Comment

This equation was estimated using annual data over 1977-1998 and over that period is well specified, it reflects the institutional lags between corporation tax accruals and payments. The equation forecasts financial year totals of corporation tax, driven by the previous calendar year taxable profits (proxied by INC) less identified allowances (CAPAL and ACTSET). The totals are then distributed evenly over the four quarters. The annual cyclicality of the tax is captured by the CBI spare capacity indicator (which is multiplied by the simplified tax base). INC is constructed by taking all company savings (SAVCO), adding back in distributed income (taxes, royalties, dividends and income due abroad) and subtracting stock appreciation and North Sea gross trading profits. The equation reflects the reforms of the Corporation Tax system announced in the March 1998 Budget, and which were implemented in April 1999. It proved very difficult to accommodate this major structural break in estimation, and so the equation is calibrated.

No.	Name	Description	Unit	Source	Identifier
IOI6 CAPAL	Capital allowances due (all companies)	$£ M$	$\mathbb{R}$	-	

Model equation: Technical Relationship - see model coding.

## Comment

CAPAL is an annual variable computed in QI of each year. The value appearing in QI represents the sum of the variable in the preceding calendar year.

The equation separately identifies capital allowances available to PNFCs and financial companies on a three asset split (plant and machinery, industrial buildings and vehicles). The equation implicitly assumes no investment by financial companies in industrial buildings. Investment in commercial buildings is not allowable against tax. The asset split is represented by the coefficients $0.477,0.303$ and 0.132 respectively for the weights of plant and machinery, industrial buildings and vehicles in PNFCs total investment; and 0.565 and 0.029 respectively for the weights of plant and machinery and vehicles in financial companies total investment (IFC $£$ ). The variables FP, SP, FIB, SIBIIC and SV represent first year and annual writing down allowances (cumulated in the case of SIBIIC). In reality, the lags on past investment in plant and machinery and vehicles are longer than the five years allowed for in this equation, and so the equation involves a fair degree of approximation even in principle.

No.	Name	Description	Unit	Source	Identifier
1017	PRT	Petroleum Revenue Tax inc. advance	$£ M$	ONS	ACCJ
		PRT			

Model equation: Behavioural Equation
$\begin{aligned} & \text { PRT }= \\ &-\quad-122+ \\ &(2.1) \text { (5.7) }\end{aligned}$
Estimation period: 1993 Q to 2005 Q4
$\mathrm{R}^{2}=0.7 \mathrm{I}$
Normality $\mathrm{CHI}^{2}{ }_{2}=0.89[0.638]$
$S E=100.12$
Hetero $\mathrm{CHI}_{1}{ }_{1}=0.15[0.699]$
LM F $(4,42)=0.264[0.899]$
Comment: This equation simply uses North Sea Gross Trading Profits (NSGTP) as a proxy to drive PRT receipts.

No.	Name	Description	Unit	Source	Identifier
1018	NSROY	North Sea Royalties accruals	$£ M$	ONS	ACEC
		141			Version Mar'08

Model equation: Behavioural Equation

$$
\begin{align*}
& \text { NSROY }=(0.013684 * 7.5 *(\text { NSGVA(-I)*PBRENT(-I))/(OILBASE*RXD(-I)) - 216.536; } \\
& \text { (10.9) }  \tag{6.4}\\
& + \text { ifge(198302)* } 228 * \mathrm{QI}+235 * \mathrm{Q} 3) \tag{8.6}
\end{align*}
$$

(6.3)

Estimation period: 1979QI to 2002Q4
$\mathrm{R}^{2}=0.74$
Normality $\mathrm{CHI}_{2}=0.44[0.80]$
SE $=95$
$\operatorname{LM} F(4,85)=28[0.0]$
Hetero $\mathrm{CHI}^{2}{ }_{1}=0.42[0.5 \mathrm{I}]$
DW $=0.89$

## Comment

This receipts equation is driven by North Sea value added (NSGVA), brought to current price terms by the Brent Oil price (PBRENT is scaled by the sterling dollar cross rate and multiplied by 7.5 to convert from barrels to tonnes). North Sea royalties were abolished in 2003.

No.	Name	Description	Unit	Source	Identifier
1019	OHT	Other household taxes on income	$£ M$	ONS	${ }^{* 3}$
				$* 3=$ NSFA+NSNP+CQTC	

Model equation: Technical Relationship
$\mathrm{OHT}=\quad \mathrm{GDPM}^{*} \mathrm{~g}(\mathrm{OHT} / \mathrm{GDPM} £)$

## Comment

Other household taxes comprise fishing and boating licences and Northern Ireland domestic rates. Vehicle excise duty paid by households is now included in model variable OCT, vehicle excise duty paid by companies (non-HH) is part of model variable OPT. Household payments are assumed to grow in line with nominal GDP.

No.	Name	Description	Unit	Source	Identifier
IO20	DIRCG	Total CG debt interest receipts	£M	ONS	$* 4$
		$*_{4}=$ GVHA+GVHC+GVHE-ZYHY-ZYIA			

Model equation: Technical Relationship
DIRCG $=$ DILACG + DIPCCG $+[0 y(0.2 R L+0.8 R S)+0 y(R S+5)] * g S L C G P R$
$+C G C+y(R S) * O C G A S S$
The equation distinguishes between two sorts of CG lending to the private sector (SLCGPR): short-term debt with a premium that mostly consisted of debentures from former public corporations, and student loans. The former debt stock is now zero and the latter has historically had a zero rate of interest, hence the coefficients on the interest flow are zero.

No.	Name	Description	Unit	Source	Identifier
IO21	DIRLA	Total LA debt interest receipts	£M	ONS	NUHC+GVHD
					+ GVHF-ZYHZ

Model equation: Technical Relationship
DIRLA $=$ DIPCLA + DICGLA +g SLAM y (RS)
$+y(0.64($ RMORT -RS $)+(1-0.64) R L) g$ SLAPO
Local Authorities undertake some mortgage lending to the private sector and this is reflected in the weights on the interest flows from the stock of private sector debt they hold.

No.	Name	Description	Unit	Source
1022	TXTOB	Tobacco duty	$£ M$	ONS

Model equation: Technical Relationship

$$
\begin{aligned}
\operatorname{Ln~TXTOB~}= & -0.92735-0.0035 *(\mathrm{~T}-9)+(0.443868-0.17316 \mathrm{~g}) * \operatorname{Ln} \text { PCE } \\
& +\left[0.17316^{*} \mathrm{~g} \operatorname{Ln}(\mathrm{PCE} / \mathrm{I} 14 . \mathrm{I})+(\mathrm{I}-0.443868) * \operatorname{Ln}(\mathrm{PCE} / \mathrm{I} 5.3)\right]^{* A A}+0.6299 \operatorname{Ln~C}
\end{aligned}
$$

$$
\begin{array}{ll}
\mathrm{AA}=0 & \text { if } \mathrm{T} \leq \mathrm{TZ}(\mathrm{I} 994 \mathrm{Q} \mathrm{I}) \\
\mathrm{AA}=\mathrm{I} & \text { if } \mathrm{T}>\mathrm{TZ}(\mathrm{I} 994 \mathrm{Q} \mid)
\end{array}
$$

## Comment

The equation runs off the consumers' expenditure with a switch to allow for the announced policy of real increases in tobacco duties.

No.	Name	Description	Unit	Source	Identifier
1023	OPT	Other Production Taxes	$£ M$	ONS	NMBX-CUKY

Model equation: Technical Relationship
OPT $=\quad$ GDPM $£^{*} \mathrm{~g}($ OPT / GDPM $)$

## Comment

This variable includes Vehicle Excise Duty (VED) paid by companies, ITC franchise payments, regulator fees and Northern Ireland non-domestic rates. The series is assumed to grow in line with nominal GDP.
No. Name Description Unit Source Identifier

| 1024 | TXMIS | Misc. expenditure taxes | EM |
| ---: | :---: | :---: | :---: |$\underset{\text { MIYP+ACDP+ACDO+DOLC+LITN+ACDM+GTAZ-CUAG+CLCJ+CIQY+MDUP }}{ }$

Model equation: Technical Relationship
TXMIS $=\quad C \not £^{*} g(T X M I S / C £)$

## Comment

This series includes betting and gaming duties, air passenger duty and insurance premium tax (I994Q4 onwards), landfill tax (1996Q4 onwards), the gas and fossil fuel levies, car tax (pre1993Q2) and payments by Camelot to the NLDF. It is net of bus fuel duty rebate and VAT penalties. The series is assumed to grow in line with nominal consumers expenditure.

No.	Name	Description	Unit	Source	Identifier
1025	TSEOP	Taxes on self-employment incomes	$£ M$	ONS	ZAFG

Model equation: Technical Relationship
TSEOP $=\quad$ TSE + O.I DIRHH

$$
\begin{aligned}
\text { TSE }= & g^{4}(\text { MI }+ \text { WYQC }) g^{4}\left\{\text { TPLR } * \text { SETA } *\left(g^{4} \text { TPNSA }\right)\right. \\
& + \text { SETA }\left(g^{4}(\text { LRB }+ \text { TPNSA })\right) *(\text { TBRZ }- \text { TPLR }) \\
& \left.+ \text { SETA }\left(g^{4}(\text { LRB }+ \text { BRB }+ \text { TPNSA })\right) *(\text { TPHR }- \text { TBRZ })\right\}
\end{aligned}
$$

$\operatorname{Ln}(\operatorname{SETA}(\mathrm{A}))==-3 * \mathrm{~A} / \mathrm{g}^{4} \mathrm{SE}+\mathrm{g}^{4} \operatorname{Ln}\left(\mathrm{I} .0+2.0 * \mathrm{~A} / \mathrm{SE}+\mathrm{I} .5 *(\mathrm{~A} / \mathrm{SE})^{2}\right)$

## Comment

This variable represents tax receipts on self-employment and other personal incomes. The former are defined as mixed income plus the withdrawals of income from quasi-corporations (partnerships) and are modelled assuming a gamma distribution for such incomes (see comment under VI002). Tax receipts on interest income are modelled by applying an effective tax rate to household interest receipts.

No.	Name	Description	Unit	Source
1026	TCINV	Other company taxes on investment	$£ M$	ONS

Model equation: Technical Relationship
TCINV $=\operatorname{TPBZR} *\left\{0.083^{*}(\right.$ DICGOP+DICGPC+DICGLA $)$

$$
+0.100^{*}(\text { DILAPR+DILACG+DILAPC) }
$$

Comment: This relationship is not estimated but is included with imposed coefficients.

No.	Name	Description	Unit	Source	Identifier
1027	INHT	Inheritance Tax	$£ M$	ONS	NMGI

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
1028	TXKCO	CG receipts of capital taxes on   companies	$£ M$	ONS	DKGZ

Model equation: Exogenous variable
Comment: This variable represents capital gains tax on companies.

No.	Name	Description	Unit	Source	Identifier
1029	CC	Community tax lcouncil tax accruals	$£ M$	ONS	NMIS

Model equation: Technical Relationship
$C C=\quad 0.81 *[-A E G+T S U B L+0.987 *($ LAWS $=+$ LAPR* $)+0.068 *$ LACGPER

$$
-0.75 \text { * LAVAT + } 0.525 \text { * (DILAPR + DILACG + DILAPC) }- \text { I.3*DIRLA] }
$$

## Comment

Under ESA95 accounting conventions domestic rates are defined as a household tax on income and wealth. This departs from the previous convention that scored domestic rates as a tax on expenditure. However, the treatment of the Community Charge/Council Tax is unchanged (i.e. it continues to score as a tax on income and wealth).

No.	Name	Description	Unit	Source	Identifier
1030	NNDRA	National Non-Domestic Rates Accruals	$£ M$	ONS	CUKY

Model equation: Technical Relationship
NNDRA $=g\left[Q I+Q 3+Q 4+g\left\{(I+g) P R / g^{4}(I+g) P R\right\} Q 2 g^{3}\right]^{* N N D R A}$

## Comment

Business rates were replaced by the National Non-Domestic Rate in 1990Q2. The rate is up-rated annually in line with the September RPI in April each year. Business rates are a central government tax on production.

No.	Name	Description	Unit	Source	Identifier
IO3I	XLAVAT	VAT refunds (except to LA)	$£ M$	ONS	CUNW

Model equation: Technical Relationship
XLAVAT $=0.3012 *$ CGP $*$ TVAT $/(1+$ TVAT $)$

## Comment

The national accounts record public sector expenditure inclusive of VAT. General government is eligible for refunds of VAT paid on inputs to their non-business activities. These refunds are scored as general government receipts. In addition, a number of VAT refunds are made to public corporations, private sector companies and to individuals in respect of non-business activities. In the national accounts total VAT accruals only includes general government VAT that is not refunded.

No.	Name	Description	Unit	Source	Identifier
1032	LAVAT	VAT refunds to LAs	$£ M$	ONS	CUCZ

Model equation: Technical Relationship
LAVAT $=36.0 *$ ifle $(19840 \mathrm{I})+\left(0.98 * \mathrm{LAPR}+2 * \mathrm{LAl} E^{* V A T H O M E}\right) *(T V A T /(I+T V A T))$
*W VATHOME $=0.22 *$ ifle $($ I9840I $)+0.33 * i f g e(198402)$

## Comment

See comment for XLAVAT. The 1984 time switch relates to the introduction of VAT on home improvements.

No.	Name	Description	Unit	Source	Identifier
1033	CGISC	CG imputed social contributions	£M	ONS	GCSG+GCSH
					+ RUDY

Model equation: Technical Relationship
CGISC $=0.005739 *$ WFP

## Comment

Central government imputed contributions to notionally and un-funded pension schemes. Under ESA95, notionally and un-funded pension contributions are recorded within CG grants to the household sector, and are a determinant of net borrowing. (Under previous national accounts conventions, these contributions were treated as a financing item, rather than a determinant, of net borrowing). See also V0949, V097I, V0974 and VI044.

No.	Name	Description	Unit	Source
1034 KGLA	LA capital receipts from UK companies   and EU	$£ M$	ONS	ANNO

Model equation: Technical Relationship
KGLA $=\quad 0.8 *$ EUKT

No.	Name	Description	Unit	Source	Identifier
1035	DVPPSCG	Dividends from Private Sector to CG	$£ M$	ONS	ZYIA

Model equation: Technical Relationship
DVPSCG = POISS

No.	Name	Description	Unit	Source	Identifier
1036	NICAC	National Insurance accruals adjustment	$£ M$	ONS	ACJY

Model equation: Technical Relationship
NICAC $=0.36^{*}($ diff(EENIC $\left.)+\operatorname{diff}(E M P N I C)\right)+973^{*}($ Q4 - Q2 $)$

No.	Name	Description	Unit	Source	Identifier
1037	HEENIR	Employee NICs higher rate	$\%$	HMT	-

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
I038	INCTAC	Income tax accruals adjustment	$£ M$	ONS	CYNX+RUTC
				DKHE+DBKE	

Model equation: Technical Relationship
INCTAC $=0.5 *(\mathrm{I}-\mathrm{g})$ TYEM
Comment: Includes an adjustment for taxes on life assurance gains, as it is not included elsewhere in the model.

No. Name	Description	Unit	Source	Identifier
1039	ILGAC	Accruals adjustment on index linked gilts $£ M$	ONS	-NMQZ

Model equation: Technical Relationship
ILGAC $=$ ILGCSH - ILGUP
Comment: Difference between the accrued uplift and the payment of accrued interest on redemption.

No.	Name	Description	Unit	Source	Identifier
1040	RNCG	CG rental receipts (ex. capital   consumption)	$£ M$	ONS	NMCK-ACEC-
				BKTK	

Model equation: Technical Relationship
RNCG $=\quad$ I.65*(PIPHH-DIPHH)

Comment: Share of the residual on the equation for household payments of property income.

No.	Name	Description	Unit	Source	Identifier
104I LAAC	LA accruals adjustment (NSA)	$£ M$	ONS	-ANML	

Model equation: Technical Relationship
LAAC $=\quad$ CCACC + LANDRAA

No.	Name	Description	Unit	Source	Identifier
1042	LRB	Lower rate band width $(£, \mathrm{Q}$ rate $)$	$£$	IR	-
I043	BRB	Basic rate band width $(£, \mathrm{Q}$ rate $)$	$£$	IR	-

Model equations: Technical Relationships
$\begin{array}{ll}\mathrm{LRB}= & (\mathrm{I}-\mathrm{Q} 2) \mathrm{g} \mathrm{LRB}+\mathrm{g}^{2}\left[(0.5+\mathrm{g}) \mathrm{PR} / \mathrm{g}^{4}(0.5+\mathrm{g}) \mathrm{PR}\right] \mathrm{g}^{4} \mathrm{LRB} * \mathrm{Q} 2 \\ \mathrm{BRB}= & (\mathrm{I}-\mathrm{Q} 2) \mathrm{g} \mathrm{BRB}+\mathrm{g}^{2}\left[(0.5+\mathrm{g}) \mathrm{PR} / \mathrm{g}^{4}(0.5+\mathrm{g}) \mathrm{PR}\right] \mathrm{g}^{4} \mathrm{BRB} * \mathrm{Q} 2\end{array}$
if T > TZ (I995Q2)

## Comment

Note that both variables are exogenous for earlier periods, and are key for VIOOI. This variable was introduced in May 1992 as a consequence of the introduction of the lower rate of income tax. The equation allows for revalorisation in line with RPI inflation (a weighted average of the RPI in Q3 and Q4) in the second quarter of each year. This uprating is controlled by a coefficient. In periods before revalorisation is assumed to take place, the lower rate band width is exogenous. The basic rate band was dealt with by means of a coefficient in previous versions of the model.

No.	Name	Description	Unit	Source	Identifier
1044	EESCCG	  unfunded CG pension schemes	$£ M$	ONS	GITB+GVFJ

Model equation: Technical Relationship
EESCCG $=0.0099929 * W F P$

## Comment

Employee contributions reduce net social benefits paid by CG to households, so reducing CG net borrowing. See comment for VI033.

No.	Name	Description	Unit	Source	Identifier
I045	TPMCA	Married Couples Allowance $(£$, Q rate $)$	$£$	IR	-
I046	TPSNA	Single persons allowance $(£$, Q rate $)$	$£$	IR	-
1048	TPAG	Age allowance (avg. single \& married $)$	$£$	IR	-

Model equation: Technical Relationships

$$
\begin{aligned}
& \text { TPMCA }=(I-Q 2) * g \text { TPMCA }+g^{2}\left[(0.5+g) P R / g^{4}(0.5+g) P R\right] g^{4} \text { TPMCA* Q2 } \\
& \text { TPSNA }=(\mathrm{I}-\mathrm{Q} 2) * \mathrm{~g} \text { TPSNA }+\mathrm{g}^{2}\left[(0.5+\mathrm{g}) \mathrm{PR} / \mathrm{g}^{4}(0.5+\mathrm{g}) \text { PR }\right] \mathrm{g}^{4} \text { TPSNA* Q2 } \\
& \text { TPAG }=(\mathrm{I}-\mathrm{Q} 2) * \mathrm{~g} \text { TPAG }+\mathrm{g}^{2}\left[(0.5+\mathrm{g}) \mathrm{PR} / \mathrm{g}^{4}(0.5+\mathrm{g}) \mathrm{PR}\right] \mathrm{g}^{4} \text { TPAG* Q2 } \\
& \text { if } T>T Z(1995 Q 2)
\end{aligned}
$$

## Comment

Note that these variables are exogenous for earlier periods. These variables are the major personal income tax allowances deductible against gross personal incomes, and feature in the equation for accruals of tax on employment incomes (TEY). The equations allows for revalorisation in line with RPI inflation (a weighted average of the RPI in Q3 and Q4) in the second quarter of each year. This mechanism is controlled by the operation of a coefficient in the model. In periods before revalorisation is assumed to take place, the allowance is exogenous. The married allowance was abolished (for those couples under 65) in the 2000 Budget.

No.	Name	Description	Unit	Source	Identifier
1047	TPLR	Lower rate of income tax (ratio)	$\%$	HMRC	-
1049	TPBRZ	Basic rate of income tax	$\%$	HMRC	-

Model equation: Exogenous variables

No.	Name	Description	Unit	Source	Identifier
1050	NSACT	North Sea ACT	$£ M$	HMRC	-

Model equation: Exogenous variable
Comment: Advance Corporation Tax was abolished in April 1999.

No.	Name	Description	Unit	Source	Identifier
1051	NHNPTC	Non-household NPISH tax credits	£M	ONS	CFGW-DYW
				-MDYU	

Model equation: Exogenous variable

## Comment

Not all working and children's tax credits are paid to households: some are paid to Non-Profit Institutions Serving Households (NPISH).

No.	Name	Description	Unit	Source	Identifier
1052	MFTRAN	CG misc. financial transactions inc.   balancing item	$£ M$	ONS	-ANRV

Model equation: Exogenous variable

No.	Name	Description	Unit	Source
1053	TCPRO	Corporation tax rate	$\%$	HMRC

Model equation: Exogenous variable,

No.	Name	Description	Unit	Source	Identifier
1054	WTCCTC	Working and children's tax credit	$£ M$	ONS	MDYN

Model equation: Exogenous variable
Comment: See VI05I.
No. Name Description Unit Source Identifier

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
IO56 EENIR	Weighted average of Class I contracted   in employee NIC rates	HMT	-	HMT	
I057 EMPNIR	Weighted average of Class I contracted   in employer NIC rates	$\%$	HM		

Model equation: Exogenous variables
Comment: Sourced from Government Actuaries Department, see also VI008 and VI009.

No.	Name	Description	Unit	Source	Identifier
I058	TVAT	VAT rate	$\%$	HMRC	-
I059 VATFACI	VAT-able durables consumption	$\%$	HMRC	-	
I060 VATFAC2	VAT-able non-durables consumption	$\%$	HMRC	-	

Model equation: Exogenous variables.
Comment: The VATFAC variables represent the proportions of durables and non-durables consumer spending that are subject to VAT, they are used to estimate the VAT base in the VAT receipts equation (VIOO4).

No.	Name	Description	Unit	Source
I061	TMIRAS	MIRAS tax rate	$\%$	HMRC

Model equation: Technical Relationship
TMIRAS $=$ TPBRZ*ifle(I9940I $)+$ TPLR*ifge(I99402)*ifle(I9950I)

## Comment

The tax rate for Mortgage Interest Relief At Source is specified for transparency. It was available at progressively lower rates after 1995 and was abolished in 2000.

No.	Name	Description	Unit	Source	Identifier
1062	TPHR	Higher rate of income tax	$\%$	HMRC	-

Model equation: Exogenous variable

No.	Name	Description	Unit	Source
1063	CGNDRAA	NNDR end year adjustment	$£ M$	ONS

Model equation: Exogenous variable

Comment: Accruals adjustment between local authorities and central government.

No.	Name	Description	Unit	Source	Identifier
1064	NNDACC	NNDR accruals adjustments	$£ M$	ONS	${ }^{* 6}$

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
1065	WINDT	Windfall tax receipts	$£ M$	ONS	EYNK

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
1066	CTI	Old CT regime proportion	$\%$	HMT	-
1067	CT2	New CT regime proportion	$\%$	HMT	-

Model equation: Technical Relationship

## Comment:

Switch variables for the change in the Corporation Tax regime from April 1999 (see VIOI5).

No.	Name	Description	Unit	Source	Identifier
1068	MILAPM	MIRAS, LAPRAS and PMI relief at source   scored as receipts	ONS	GCJG	

Model equation: Technical Relationship

```
MILAPM = 0.54 * TMIRAS * LHP * y (RMORT)
 if T \geq I99|Q2
```


## Comment

Mortgage Interest Relief At Source (MIRAS), LAPRAS and PMI etc.

No.	Name	Description	Unit	Source	Identifier
1069	VTR	Vocational training relief-receipts	$£ M$	ONS	-MDUF

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
IO70	MILAPME	MIRAS, LAPRAS and PMI relief at source   scored as public expenditure	ONS	DCHG+DCHF	
	sch		$+G C J J$		

Model equation: Technical Relationship
MILAPME $=0.061 *$ MILAPM
if $\mathrm{T} \geq 199 \mathrm{Q} 2$
Comment: See VI068.

No.	Name	Description	Unit	Source	Identifier
IO7I	VTRCS	Vocational training \& other reliefs scored $£ M$   as public expenditure	ONS	IQKI+BKSG+B	

Model equation: Exogenous variable
Comment: Vocational training, charities and stakeholder pensions relief scoring as public expenditure.

No.	Name	Description	Unit	Source	Identifier
1072	HHTCG	Household transfers to CG	$£ M$	ONS	NMEZ

Model equation: Technical Relationship
HHTCG $=\mathrm{g}$ HHTCG

No.	Name	Description	Unit	Source	Identifier
1073	TAXCRED	Total income tax credits	$£ M$	ONS	HMT

Model equation: Technical Relationship (Identity)
TAXCRED $=$ MILAPM + VTR + WFTCNT + CTC

## Comment

Tax credits, including credits netted off Inland Revenue receipts and credits paid to non-taxpayers.

No.	Name	Description	Unit	Source	Identifier
1074	INCTAXG	Income tax gross of tax credits	$£ M$	ONS	LIPG

Model equation: Technical Relationship (Identity)
INCTAXG $=$ TYEM + TSEOP + TCINV - INCTAC + VTR + CTC - PFTC - NPISHTC

No.	Name	Description	Unit	Source
1075	CT	Corporation Tax	Identifier	
				ONS
			ACCD-	

Model equation: Technical Relationship (Identity)
$\mathrm{CT}=\quad \mathrm{TCACT}+\mathrm{NSCTP}+\mathrm{NNSCTP}+\mathrm{TXKCO}+\mathrm{PCOTC}+\mathrm{RLCOTC}$

No.	Name	Description	Unit	Source	Identifier
1076	NTSSC	Net taxes and social security   contributions	$£ M$	ONS	HMT

Model equation: Technical Relationship (Identity)

$$
\left.\begin{array}{rl}
\text { NTSSC }= & (\text { INCTAXG - TAXCRED + EENIC + EMPNIC - NICAC })+(C G T+I N H T+\text { TSD }) \\
& +(\text { VREC + LAVAT + XLAVAT + TXALC + TXTOB + TXFUEL + TXMIS) } \\
& +(O C T+\text { BETPRF })+(C C+C C A C C ~+~ N N D R A ~+~ L A N N D R ~-~ N N D A C C ~
\end{array}\right)
$$

No.	Name	Description	Unit	Source	Identifier
1077 CGCs	CG IPD credits (earnings on reserves)	$£ M$	ONS	D69U	

Model equation: Technical Relationship
$C G C=\quad\left((I+(\text { ROSHT }-0.3) / I 00)^{\wedge} 0.25-I\right)^{*}($ SRES + SRES $(-I)) / 2+25$

No.	Name	Description	Unit	Source	Identifier
1078	SWAPS	Swap adjustments	$£ M$	ONS	CFZG

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
1079	ROCs	Renewable Obligation Certificates ( $\operatorname{tax}$   on products)	$£ M$	ONS	EP89

Model equation: Technical Relationship

```
ratio(ROCs)= ratio(GDPM£)
```

No.	Name	Description	Unit	Source	Identifier
1080	EUOT	Payments of taxes on products to EU	$£ M$	ONS	FJWE+FJWG

Model equation: Technical Relationship
EUOT $=\quad$ GDPME* $\mathrm{g}($ EUOT/GDPME)

No.	Name	Description	Unit	Source	Identifier
1081	CGT	Capital Gains Tax	$£ M$	ONS	QYJX

Model equation: Exogenous variable
Comment: CG capital gains tax receipts from households.

No.	Name	Description	Unit	Source	Identifier
1082	POISS	Profits of note issue	$£ M$	ONS	EYWM

Model equation: Technical Relationship
POISS $=\quad$ MO* $0.92^{*}\left((I+(R S-0.22) / I 00)^{\wedge} .25-I\right)$

## Comment

The equation captures the interest earned on the assets that back the note issue. The interest rate is at a discount to short rates.
No. Name Description Unit Source Identifier
1083 LAPT LA receipts of production taxes $£ \mathrm{M} \quad$ ONS NMYH

Model equation: Technical Relationship

```
LAPT = g LAPT GDPME / g GDPME
```

No.	Name	Description	Unit	Source	Identifier
1084	MOBACC	Spectrum accruals adjustment	$£ M$	ONS	-BKTC
1085	MOBREV	Spectrum accruals	$£ M$	ONS	BKTK

Model equation: Exogenous variable and technical relationship.
MOBACC $=$ MOBREV

## Comment

These are the receipts and associated accruals adjustment from the Auction of Spectrum Licences in 2001. Under ESA95 it could be argued that these receipts should be scored as the sale of an asset but in the UK they are scored as rent accruing each year.

No.	Name	Description	Unit	Source	Identifier
1086	CTC	Children's Tax Credit	$£ M$	ONS	-MUDG-MDYL

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
1087	BETPRF	  wealth	OM	ONS	MIYF

Model equation: Exogenous variable.

No.	Name	Description	Unit	Source	Identifier
1088	BETLEVY	Betting levies scored as taxes on income   \& wealth	©M	ONS	DY9E

Model equation: Exogenous variable.

No.	Name	Description	Unit	Source	Identifier
I09I	VED	Vehicle Excise Duty (VED) receipts	$£ M$	ONS	GTAX
1092	VEDHH	VED paid by HH	$£ M$	ONS	CDDZ
1093	VEDCO	VED receipts from non-HH	$£ M$	ONS	GTAX-CDDZ

Model equation: Technical relationship (Identity)
VED $=\quad$ VEDHH + VEDCO

Previously VED paid by households was included in OHT but it is now explicitly identified. VEDHH and VEDCO are both exogenous.

No.	Name	Description	Unit	Source	Identifier
1094	BBC	Television licence tax	$£ M$	ONS	DH7A

Model equation: Exogenous variable.

No.	Name	Description	Unit	Source	Identifier
1095	PASSPORT	Passport fees	$£ M$	ONS	E8A6

Model equation: Exogenous variable.

No.	Name	Description	Unit	Source	Identifier
1096	OCT	Other current taxes	$£ M$	ONS	NMCV-CQOQ

Model equation: Technical relationship (Identity)
$\mathrm{OCT}=\quad \mathrm{VEDHH}+\mathrm{BBC}+\mathrm{PASSPORT}+\mathrm{OHT}$

## Comment

VED paid by companies is classified as a tax on production and is hence included in OPT.

No.	Name	Description	Unit	Source	Identifier
1097	DIVRCG	Total CG dividend receipts	$£ M$	ONS	ZYIA+ZYHY

Model equation: Technical relationship (Identity)
DIVRCG = DVPSCG + DVPCCG

No.	Name	Description	Unit	Source	Identifier
1098	NIS	Employers' Natl Insurance Surcharge	$£ M$	ONS	ACEF

Model equation: Exogenous variable.

No.	Name	Description	Unit	Source	Identifier
1099	SC	Supplementary charge on N. Sea profits	$£ M$	HMT	

Model equation: Exogenous variable.

No.	Name	Description	Unit	Source	Identifier
6001	CETAX	Custom \& Excise Taxes	$£ M$	ONS	ACAC

Model equation: Technical relationship (Identity).

CETAX $=\quad$ VREC + TXFUEL + TXTOB + TXALC + EUOT + CCL + AL + TXCUS

No.	Name	Description	Unit	Source	Identifier
6002	TXCUS	Misc. Customs and Excise taxes	$£ M$	ONS	${ }^{*} 6002$

Model equation: Technical relationship.

```
ratio(TXCUS)= ratio(C }£
```

No.	Name	Description	Unit	Source	Identifier
6003	AL	Aggregates Levy	$£ M$	ONS	MDUP

Model equation: Exogenous variable.

No.	Name	Description	Unit	Source
6004 CCL	Climate Change Levy	$£ M$	ONS	Identifier

Model equation: Exogenous variable.

No.	Name	Description	Unit	Source	Identifier
6005	OFGEM	Tax levied by OFGEM	$£ M$	ONS	*EO2E

Model equation: Technical relationship.

```
ratio(OFGEM) = ratio(GDPM£)
```

No.	Name	Description	Unit	Source	Identifier
6006	SENIR	Self-Employed class 4 NIC Rate	$\%$	HMT	

Model equation: Exogenous variable.

No.	Name	Description	Unit	Source	Identifier
6007	RFP	Rail franchise premia	$\%$	ONS	LITT

Model equation: Exogenous variable.

## GROUP II: BALANCE OF PAYMENTS

This group contains Interest, Profit and Dividends earned and paid overseas (IPD credits and debits), the related stocks of overseas assets and liabilities and the implied rate of return yields. It also includes the current balance of payments identity, most transfers, the model's system of exchange rate equations and various related variables.

## IPD

IPD credit and debit variables are calculated by applying rates of return ( $R$ ) to the stocks $(Q)$ of overseas assets and liabilities respectively. These stocks are determined by revaluing the stock levels in the previous period to allow for movements in exchange rates and asset prices, and adding a term to capture gross capital flows (overseas investment).

The implicit gross capital flow terms are constrained to ensure the balance of payments identity holds (with net capital inflows equal to the current account deficit). The treatment is highly aggregative. There is only one aggregate debits variable. Credits are also aggregated, with only central government earnings on the reserves separately identified. Bank lending, which dominates in gross terms but is small in net terms, is included on a net basis: foreign currency lending in assets; sterling lending in liabilities.

The stock variables are measured as end-quarter $\left(Q_{t}\right)$ levels, but the IPD flows are derived from average stock levels, where:

```
IPD \(_{t}=0.25 * R_{t} * S_{t}\)
\(S_{t}=\left(Q_{t}+Q_{t-1}\right) / 2\)
\(\mathrm{Q}_{\mathrm{t}} \quad=\mathrm{Q}_{\mathrm{t}-1} *\) Revaluation effect + capital outflow
```

Capital flows are modelled implicitly and the implicit capital inflow term in the assets equation is based on a stock adjustment approach. The target level of liabilities is modelled as a multiple of GDP that rises over time. The actual level adjusts towards this target but only by a fraction of the difference in any period ( 9 per cent). The implicit flow term in the liabilities equation is determined by the current account identity. Two kinds of revaluation to the stocks of assets and liabilities are identified:

## I. Exchange rate effects

US dollar
Non-dollar

## 2. Asset price changes

Equity prices (FT UK all share and world (ex. UK) indices
Long-term interest rates
The rates of return proved difficult to model. A reasonable equation was estimated for the return on liabilities. The rate of return on assets equation was estimated in the form of a margin over the rate of return on liabilities, given the statistical correlation between the two rates of return and the difficulties of obtaining a satisfactory independent equation. Although the composition of the stocks of assets and liabilities will generally differ (e.g. with different direct investment shares), the explanatory variables are also modelled as margins (e.g. the world long rate less the UK long rate).

The equations for rate of return do not contain any explicit dividend yield terms, and hence the terms in profitability and long rates may therefore be partly proxying the yield on equities. IPD
flows feed into various other model variables with coefficients that reflect the shares of bank lending, direct, portfolio, oil and 'other' investment in the total over the last few years.

## The Exchange Rate

The exchange rate equation is based on a modified uncovered interest parity condition with its risk premium assumed to be a function of the current account relative to GDP and inflation differentials.

## Further Documentation

MRG (93)I2 and minute from Roy Cromb to Rod Whittaker of II August 1993.

No.	Name	Description	Unit	Source	Identifier
1101	SAS	Stock of Assets	$£ M$	ONS	${ }^{7}$

*7 = HBQA-LTEB-HCFO-NLDA-HFBB

Model equation: Technical Relationship
$S A S=(R E V A-0.1 I) * g S A S+[-I .03+0.013 * T] *(G V A *)$

REVA $=[\mathrm{I}+0.60 *(\mathrm{~g} \text { RXD/RXD }-\mathrm{I})+0.4(\mathrm{~g} \mathrm{RX} / \mathrm{RX}-\mathrm{I})]^{*}$

$$
\begin{equation*}
\text { [ I + } 0.25 *(W E Q P R / g W E Q P R-I)+0.05 *(g \text { ROLT/ROLT - I)] } \tag{2.0}
\end{equation*}
$$

Estimation period: 1989Q2-1999Q4
$\mathrm{R}^{2}=0.99$
SE $=3.3$
LM F $(4,33)=2.3$
$D W=1.8$
Normality $\mathrm{CHI}^{2}=1.0$
Hetereo F(I,4I) $=5.3$

## Comment

SA is the stock of overseas assets, excluding central government reserves and bank lending overseas in sterling, but including bank lending overseas in foreign currency (in net terms).

The equation is estimated but most coefficients were imposed in line with actual shares of different categories of investment over the last few years. The implicit capital outflow term is modelled as a stock adjustment to a target multiple of nominal GDP (GVA£) that rises over time.

No.	Name	Description	Unit	Source	Identifier
1102	SL	Stock of Liabilities	$£ M$	ONS	HBQB-HFBB-
				HCFQ-NLDA	

Model equation: Technical Relationship
$S L=\quad[(-C B-D R E S-B A L+g S L * R E V L-0.1 I * g S A) / G V A *-I .03+0.0 I 3 * T)] G V A *$

$$
R E V L=I+0.28 *(g R X D / R X D-I)+0.1 *(g R X / R X-I)
$$

$$
+0.37 *(\text { EQPR/g EQPR }-\mathrm{I})+0.05 *(\mathrm{~g} R / R L-\mathrm{I})
$$

Estimation period: I989Q2 to 1999Q4
$\mathrm{R}^{2}=0.99$

$$
D W=1.5
$$

SE = 7.7I

## Comment

SL is the stock of liabilities to overseas residents, excluding overseas residents' deposits with UK banks in foreign currency but including overseas residents' sterling deposits with UK banks (in net terms).

The equation is similar to that for the stock of assets, though the coefficients on the exchange rate revaluation terms sum to much less than unity, reflecting the smaller proportion of liabilities denominated in foreign currency (some commercial bonds, oil related investments and individuals' borrowing from abroad).

No.	Name	Description	Unit	Source	Identifier
1103	SRES	Stock of total official reserves	$£ M$	ONS	AIPD

Model equation: Technical Relationship
SRES $=\quad-$ DRES $+[I+0.43 *(g R X D / R X D-I)+0.29 *(g R X / R X-I)] * g$ SRES

No.	Name	Description	Unit	Source
1104	BAL	Balancing item in BoP account	$£ M$	ONS

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
1105	RSL	Rate of return on Stock of Liabilities	$\%$	HMT	-

Model equation: Behavioural Equation

$$
\begin{align*}
& \text { RSL }=0.45+0.11 * R S+0.55 * R L+0.05 *(100 * \text { FYCPR } / \text { GDPM* }-17) \\
& \text { (I.I) (2.7) (7.5) (0.8) } \\
& \text { + } 0.06 \text { \{ (PBRENT) / ( RXD / PGDP /I00 ) \} } \tag{I.2}
\end{align*}
$$

Estimation period: 1990QI to 1999Q4
$\mathrm{R}^{2}=0.90$
DW $=1.5$
$S E=0.48$
Normality $\mathrm{Chi}^{2}{ }_{2}=1.7$
$\operatorname{LMF}(4,3 \mathrm{I})=0.60$
Hetereo F(I,3I) $=0.8$

## Comment

The rate of return on liabilities is conditioned on UK short and long term interest rates, profitability (the ratio of gross trading profits to nominal GDP), and the real price of oil in sterling terms.

No.	Name	Description	Unit	Source	Identifier
1106	RSA	Rate of return on Stock of Assets	$\%$	HMT	-

Model equation: Behavioural Equation
RSA $=$ RSL $+0.09 *($ ROSHT - RS $)+0.45 *($ ROLT - RL $)$
(-)
Estimation period: 1990QI to 1999Q4
$R^{2}=0.31$
$S E=0.67$
$D W=0.72$

## Comment

The equation for the rate of return on assets models the margin over the liabilities rate of return as dependent on the margins between world and UK interest rates. Obtaining stable equations for the rates of return proved very difficult.

No.	Name	Description	Unit	Source	Identifier
1107	CIPD	IPD credits	$£ M$	ONS	$* 8$

*8 = HBOK-HHCC-HCEH-(CGGT-HCAT)
Model equation: Technical Relationship
$\mathrm{CIPD}=\quad(\mathrm{RSA} / I 00) * 0.25 *(\mathrm{SAS}+\mathrm{SAS}(-\mathrm{I})) / 2$

## Comment

IPD credits defined on a basis consistent with the asset stock definition. The coefficient of 0.00125 or I/800 is derived as follows: as a simplification the quarterly rate of return is defined as one quarter of the annual rate of return; RSA is stored as 5 for example and not 0.05 and the CIPD flow relates to the average stock over the last two periods.

No.	Name	Description	Unit	Source	Identifier
1108	DIPD	IPD debits	$£ M$	ONS	HBOL-HCEH-
				(CGGT-HCAT)	

Model equation: Technical Relationship
DIPD $=\quad($ RSL $/ I 00) * 0.25 *(S L+S L(-I)) / 2$
Comment: IPD debits defined on a basis consistent with the liabilities stock variable.

No.	Name	Description	Unit	Source	Identifier
1109	CGCBOP	CG earnings on reserves: scoring in BoP	$£ M$	ONS	HHCC

Model equation: Technical Relationship
diff(CGCBOP) $=$ diff(CGC)

No.	Name	Description	Unit	Source	Identifier
1110	NIPD	Net inflow of IPD	$£ M$	ONS	HBOM

Model equation: Technical Relationship (Identity)
NIPD $=$ CIPD - DIPD + CGC

No.	Name	Description	Unit	Source	Identifier
1111	WEQPR	World equity prices:	Index	OECD	

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
1112	ROLT	GDP weighted long-term interest rate:	$\%$	OECD	
	Eurol I+US+Japan+Canada				

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
$I I I 3$	EECOMPD	Employees compensation due abroad	$£ M$	ONS	IJAI

Model equation: Technical Relationship
EECOMPD $=0.001687 *$ FYEMP

No.	Name	Description	Unit	Source	Identifier
1114	DRES	Changes to foreign currency reserves	$£ M$	ONS	LTCV

Model equation: Exogenous variable
Comment: Drawings on or additions to official foreign currency reserves (inc. official borrowing).

No.	Name	Description	Unit	Source	Identifier
III5	ROSHT	GDP weighted 3 month interest rate:	$\%$	OECD	-
	Eurol I+US+Japan+Canada				

Model equation: Exogenous variable

No.	Name	Description	Unit	Source
1116 ECUPO	Sterling/Euro exchange rate (Euros/ $£$ )	Number	ONS	THAP

Model equation: Technical Relationship
$E C U P O=\quad((1.3725 /(I-0.32)) *(R X / I 00-0.32 * R X D / I .7850))$

## Comment

This equation was derived from the approximation that $\mathrm{RX}=\mathrm{a}^{*} \$ / £+(\mathrm{I}-\mathrm{a})^{*}$ non-dollar/£ where non-dollar $=b^{*} E u r o s+(I-b)^{*}$ non-Euros. The Model equation (obtained using a grid search procedure over 1990-2005) uses weights of $a=0.32$ and $b=l$. The coefficients in the equation are affected by scaling factors for the base year of 1990 .

No.	Name	Description	Unit	Source	Identifier
1117	RXE	Expected exchange rate	Number	ONS	AGBG(+1)

Model equation: Technical Relationship
$\operatorname{Ln}$ RXE $\quad=g \operatorname{Ln} R X$
Comment: See comment for RX (VIII9).

No.	Name	Description	Unit	Source	Identifier
1118	MI4GDP	GDP in Euroll+US+Japan+Canada	$£ M$	OECD	-

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
1119	RX	Sterling effective exchange rate	Index	ONS	BK67

Model equation: Behavioural Equation
$\operatorname{Ln} \mathrm{RX}=\quad \operatorname{Ln}[\mathrm{RXE}(\mathrm{I}+0.0025 * \mathrm{RS}) /(\mathrm{I}+0.0025 * \mathrm{ROSHT})]$
$+0.24 * \mathrm{CB} /\left(\mathrm{GDPM}^{*}-\mathrm{BPA}^{*}\right)-\mathrm{g}(\mathrm{I}-\mathrm{g})^{2} \operatorname{Ln}($ PXNO/WPG)

## Comment

The exchange rate equation is based on an augmented uncovered interest parity condition with the risk premium being a function of terms in the ratio of the current balance to nominal GDP at factor cost and a proxy for the change in the (expected) inflation differential. The latter term arose from an equation that was estimated in real terms with the real interest rate being specified in ex-post terms.

The model may be simulated under the consistent expectations assumption in which the expected exchange rate ( $\mathrm{VIII7}$ ) is set equal to the model's prediction. A simple backward looking equation is provided as an alternative to fully consistent expectations.

No.	Name	Description	Unit	Source	Identifier
1120	RXD	Sterling - dollar cross rate	Rate	ONS	AUSS

Model equation: Technical Relationship
$R X D=0.01830804^{*} R X$

Comment: RX equals 100 in January 2005 and averaged IOI.01 over the period July 2004 to July 2005 , with the $\$ / £$ exchange rate averaging 1.8493 over the same period.

No.	Name	Description	Unit	Source	Identifier
1121	$C B$	Current account Balance of Payments	$£ M$	ONS	HBOP

Model equation: Technical Relationship (Identity)
$C B=$ NIPD - TROD $-(E E C O M P D-E E C O M P C)-(H H T A-H H T F A)-(I T A-C G I T F A)-B E N A B$

- ECNET - GNP4 - (EUVAT+EUOT) + (EUSUBP+EUSUBPR+EUSF)
- 0.01*(XNO*PXNO + XS*PXS - MNOS*PMNOS + XOIL*PXOIL - MOIL*PMOIL)

No.	Name	Description	Unit	Source	Identifier
1122	EECOMPC	Employees compensation from abroad	$£ M$	ONS	IJAH

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
1123	EUSUBP	EU subsidies on products	$£ M$	ONS	FKNG

Model equation: Technical Relationship
EUSUBP = g EUSUBP g ECUPO / ECUPO

## Comment

This consists of total agricultural subsidies less subsidies on agricultural production i.e. setaside and credits from the European Coal and Steel Community (now largely zero), and a longer run of data can be found using the identifiers ZXIA-ZJZD+FHHS.

No.	Name	Description	Unit	Source	Identifier
1124	HHTFA	Household transfer receipts from abroad $£ M$	ONS	CGDO-NHRX-	

Model equation: Technical Relationship
HHFTA $=g$ HHFTA g RX/RX

No.	Name	Description	Unit	Source	Identifier
1125	HHTA	Household transfer payments abroad	$£ M$	ONS	CGDS-FLVY
				- FHLS-FLVE	

Model equation: Technical Relationship
$\mathrm{HHTA}=0.007317 * \mathrm{WFP}$

## Comment

This is largely remittances. Since an identifier for seasonally adjusted data is not available a seasonally adjusted series is obtained by residual.

No.	Name	Description	Unit	Source	Identifier
1126	EUKT	Capital transfer payments from EU	$£ M$	ONS	GTTY

Model equation: Exogenous variable
EUKT $=\quad \mathrm{g}$ EUKT

No.	Name	Description	Unit	Source
1127	MIKTFA	Migrants capital transfers from abroad	£M	ONS

Model equation: Exogenous variable
Ln MIKTFA $=\quad \mathrm{g} \operatorname{Ln}$ MIKTFA

No.	Name	Description	Unit	Source	Identifier
1128	MIKTA	Migrants capital transfers abroad	$£ M$	ONS	FLWJ

Model equation: Exogenous variable
$\operatorname{Ln}$ MIKTA $=\quad \mathrm{g} \operatorname{Ln}$ MIKTA

No.	Name	Description	Unit	Source	Identifier
1129	CGKTA	CG capital transfers abroad	£M	ONS	FLWB

Model equation: Technical Relationship

```
CGKTA = 0.045255I * KCGPSO
```

No.	Name	Description	Unit	Source
1130	OPSKTA	Other Private Sector capital transfers	EM	ONS
FLWI-FLWJ				

Model equation: Exogenous variable
OPSKTA = g OPSKTA

No.	Name	Description	Unit	Source	Identifier
1131	EUSF	Receipts from EU Social Fund	$£ M$	ONS	HHAD

Model equation: Technical Relationship
EUSF $=\quad \mathrm{g}$ EUSF g ECUPO $/ \mathrm{ECUPO}$

No.	Name	Description	Unit	Source	Identifier
1132	NPAA	Net acquisitions of non-produced   non-financial assets e.g. land.	$£ M$	ONS	FHJL-FLWT

Model equation: Exogenous variable
NPAA $=\quad$ g NPAA

No.	Name	Description	Unit	Source	Identifier
1133	GNP4	UK fourth resource contribution to EU	£M	ONS	HCSO+HCSM

Model equation: Technical Relationship
GNP4 $=0.010 *((G D P M E+$ NIPD + EECOMPC - EECOMPD $) / E C U P O(-4))$

No.	Name	Description	Unit	Source	Identifier
1134	BENAB	Social security benefits paid abroad	$£ M$	ONS	FLUK

Model equation: Technical Relationship
BENAB $=0.012 *$ CGSUB

No.	Name	Description	Unit	Source	Identifier
1135	CGITFA	CG tax receipts from abroad	$£ M$	ONS	CGDN

Model equation: Technical Relationship

No.	Name	Description	Unit	Source	Identifier
II36	ITA	Tax payments abroad	$£ M$	ONS	FLVE

Model equation: Technical Relationship
$\mathrm{ITA}=0.0008641 * W F P$

No.	Name	Description	Unit	Source	Identifier
1137	EUSUBPR	EU subsidies on production	$£ M$	ONS	FHLK

Model equation: Technical Relationship
EUSUBPR = g EUSUBPR g ECUPO / ECUPO

## Comment

A longer run of data is available using the identifier ZJZD, see comment for VII23.

No.	Name	Description	Unit	Source	Identifier
1138	TRANC	Transfer credits	$£ M$	ONS	IKBN

Model equation: Technical Relationship (Identity)
TRANC $=$ EUSUBP + HHTFA + EUSF + CGITFA + EUSUBPR - ECNET + INSURE

No.	Name	Description	Unit	Source	Identifier
II39	TRAND	Transfer debits	$£ M$	ONS	IKBO

Model equation: Technical Relationship (Identity)
TRAND $=$ TROD + EUVAT + EUOT + HHTA + GNP4 + BENAB + ITA + INSURE

No.	Name	Description	Unit	Source	Identifier
1140	TRANB	Transfers balance	$£ M$	ONS	IKBP

Model equation: Technical Relationship (Identity)
TRANB $=$ TRANC - TRAND

## Comment

The transfers variables have been included primarily as a check on the data.

No.	Name	Description	Unit	Source	Identifier
1141	INSURE	Non-life insurance claims \& premiums	$£ M$	ONS	NHRX+FLVY

Model equation: Exogenous variable.
Comment - This occurs as both a debit and a credit but these are defined to be equal.

No.	Name	Description	Unit	Source
1142 CB\%	Current account Balance of Payments, $\% \%$	Identifier		
	GDP	ONS	AA6H	

Model equation: Technical Relationship (Identity).
$C B \%=(C B / G D P M £) * 100$

No.	Name	Description	Unit	Source	Identifier
1143	NAFROW	Net lending by Rest of the World	$£ M$	ONS	RQCH

Model equation: Technical Relationship (Identity).
NAFROW $=-(\mathrm{CB}+($ EUKT + MIKTFA $)-(C G K T A+$ MIKTA + OPSKTA $)+$ NPAA $)$

## GROUP TWELVE: PUBLIC COPORATIONS \& PUBLIC SECTOR TOTALS

This group covers expenditure and receipts relating to Public Corporations, capital consumption split by CG, LA and PC sectors, the public sector aggregates (including those on current receipts and expenditure, investment and the financial transactions), and public sector net wealth.

No.	Name	Description	Unit	Source	Identifier
1201	KPSPC	PC capital transfers from Private Sector	$£ M$	ONS	ADSE

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
1202	IPC $£$	PC Gross Fixed Capital Formation	$£ M$	ONS	ANNQ

Model equation: Technical Relationship
$\mathrm{IPC} E \quad((0.5042 * \mathrm{APH} / \mathrm{I} . \mathrm{II} 22+(\mathrm{I}-0.5042) * \mathrm{PI}) *(\mathrm{PCLEB})+\mathrm{PI} * 0.0348 * \operatorname{IBUS}) / 100$
*W PI $=\quad(\mathrm{PIF}-0.08424 * \mathrm{APH} / \mathrm{I} . \mathrm{I} \mid 22) /(\mathrm{I}-0.08424)$

## Comment

PCs gross fixed capital formation (GFCF) at current prices is determined by quasi-identity in common with PNFCs and households, see comment for V03I3.

No.	Name	Description	Unit	Source	Identifier
1203	IBPC	PC increase in stocks	$£ M$	ONS	DHHL

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
1204	OSPC	PC Gross Operating Surplus	$£ M$	ONS	NRJT

Model equation: Technical Relationship
OSPC $=0.025 *$ OS

## Comment

PCs gross operating surplus is assumed to be proportional to the whole economy operating surplus.

No.	Name	Description	Unit	Source	Identifier
1205	MFTPC	PC misc. financial transactions	$£ M$	ONS	ANVQ+NCXS


No.	Name	Description	Unit	Source	Identifier
1206	DIPRPC	PC interest receipts from Private Sector	$£ M$	ONS	GVHG

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
1207	KGLAPC	Capital grants from LA to PC	$£ M$	ONS	ADCF

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
1208	DVPCLA	PC dividend payments to LA	$£ M$	ONS	ZYHZ

Model equation: Technical Relationship
DVPCLA $=\mathrm{g}$ DVPCLA $*($ OSPC $/ \mathrm{g}$ OSPC $)$

No.	Name	Description	Unit	Source
1209	KCGPC	PC capital grants from CG	Identifier	
				ONS
Model equation:	Exogenous variable			NMGR-NMGT


No.	Name	Description	Unit	Source	Identifier
1211	DIRPC	PC debt interest receipts	$£ M$	ONS	GVHH

Model equation: Technical Relationship (Identity)
DIRPC $=$ DIPRPC + DICGPC + DILAPC

No.	Name	Description	Unit	Source	Identifier
1212	DIPCOP	PC debt interest payments to overseas   and Private Sectors	$£ M$	ONS	GZSO

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
1213	DVPCCG	PC dividend payments to CG	$£ M$	ONS	ZYHY

Model equation: Exogenous variable

No. Name	Description	Unit	Source	Identifier

Model equation: Technical Relationship

$$
\begin{aligned}
\text { PUBSTPD }= & - \text { EUVAT + TSD +VREC + EXDUTAC + TXALC + TXFUEL + TXTOB + OPT } \\
& + \text { TXMIS + NNDRA + XLAVAT + LAVAT + LAPT - CCLACA }
\end{aligned}
$$

No.	Name	Description	Unit	Source	Identifier
1215	TYPCO	PC onshore corporation tax payments	$£ M$	ONS	FCCS

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
1217	PFTC	Pension fund tax credits	$£ M$	ONS	-CFGS

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
1218	FCACA	FINCOs Accruals Adjustment	$£ M$	ONS	DKHH+ZYBE

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
1219	PCCON	Total PC capital consumption	$£ M$	ONS	NSRM

Model equation: Technical relationship
$\mathrm{PCCON}=0.0156 *(\mathrm{IPC}+\mathrm{g}$ PCSTOCK $*$ PTFE/g PTFE $)$
PTFE $=\quad$ TFE $£ /$ TFE
if $T \geq T Z$ (I991QI)
Comment: All of public corporations capital consumption is trading.

No.	Name	Description	Unit	Source
1220	KPCPS	Capital grants from PCs to Private Sector $£ M$	ONS	ZMLE

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
1222	PCSTOCK	PC net capital stock	$£ M$	ONS	CIXJ

Model equation: Technical relationship

```
PCSTOCK = (I-0.0I56) (IPC + g PCSTOCK * PTFE/g PTFE)
```

PTFE $=\quad$ TFE*/TFE

$$
\text { if } T \geq T Z \text { (I99।Q।) }
$$

No.	Name	Description	Unit	Source	Identifier
1223	CGNB	CG net borrowing	$£ M$	ONS	-NMFJ

Model equation: Technical relationship (Identity)

$$
\begin{aligned}
C G N B= & \text { KCGPC + DINVCG - PUBSTPD - TYPCO - PUBSTIW + CGWS + CGP + CGI* } \\
& + \text { NPACG + CGTSUB + CGSB + DICGOP + CGCGLA + KCGLA + ECNET } \\
& + \text { TROD + KCGPSO + CGOTR + DICGPC + DICGLA + EENIC + EMPNIC } \\
& + \text { DIRCG + INHT + NSROY - RNCG - DIVRCG - HHTCG - CGT - OHT + LAPT } \\
& - \text { MOBREV - KPSCG - LANNDR }
\end{aligned}
$$

No.	Name	Description	Unit	Source	Identifier
1225	CGACADJ	CG accruals adjustments	$£ M$	ONS	ANRT+ANRU
				+ ANRV	

Model equation: Technical relationship (Identity)

$$
\begin{aligned}
\text { CGACAD }= & \text { CONACC }+ \text { EXDUTAC }+ \text { NICAC }+ \text { INCTAC }+ \text { ILGAC + MFTRAN } \\
& + \text { CGNDRAA }+ \text { MOBACC }
\end{aligned}
$$

Comment: CG accruals adjustments include adjustments on conventional and indexed linked gilts, excise duties, PAYE, national insurance, NNDR and spectrum.

No.	Name	Description	Unit	Source	Identifier
1226	LANB	Local authority net borrowing	$£ M$	ONS	-NMOE

Model equation: Technical relationship (Identity)

$$
\begin{aligned}
\text { LANB }= & \text { KLA + GCGLA + LASBHH + KCGLA + LAWS + LAPR + LAI£ + DILAPR } \\
& + \text { NPALA + LATSUB + DILACG + DILAPC + DIRLA + CC + KGLA - LAPT } \\
& - \text { DVPCLA + LAOTRHH + LANNDR }
\end{aligned}
$$

No. Name Description Unit Source Identifier

Model equation: Technical relationship (Identity)
TDEF $=\quad$ LANB + CGNB + SWAPS

No.	Name	Description	Unit	Source	Identifier
1228	PSCR	Public Sector Current Receipts	$£ M$	ONS	ANBT

Model equation: Technical relationship (Identity)

$$
\begin{aligned}
\text { PSCR }= & \text { OSPC + CGTPC + DIRPC + DVPCCG + PUBSTD + PUBSTIW + OSGG + DICGPC } \\
& - \text { DILAC + DIPCCG + DIPCLA + DICGLA + DILAPC + EENIC + EMPNIC + NSROY } \\
& + \text { OHT + DIRCG + DIRLA + INHT + CC +RNCG + DIVRCG + HHTCG + MOBREV }
\end{aligned}
$$

No.	Name	Description	Unit	Source	Identifier
1229	PSCE	Public Sector Current Expenditure	$£ M$	ONS	ANLT

Model equation: Technical relationship (Identity)

$$
\begin{aligned}
\text { PSCE }= & \text { DIPCOP + CGWS + CGP + CGTSUB + CGSB + DICGOP + LASBHH + ECNET } \\
& \text { TROD + RCGIM + LAWS + LAPR + DILAPR + CGOTR + RLAIM + LATSUB } \\
& + \text { LAOTRHH }
\end{aligned}
$$

No.	Name	Description	Unit	Source	Identifier
1230	PSCB	Public Sector Current Budget	$£ M$	ONS	ANMU

Model equation: Technical relationship (Identity)
PSCB $=\quad$ PSCR - PSCE - DEP

No.	Name	Description	Unit	Source	Identifier
$123 \mid$	PSGI	Public Sector Gross Investment	$£ M$	HMT	-

Model equation: Technical relationship (Identity)

$$
\begin{aligned}
\text { PSGI }= & \text { KPSPC }+I P C+I B P C+K G L A P C+\text { DINVCG + CGI* + KLA }+K C G P S O+L A I^{*} \\
& + \text { ASSETSA }-K G L A+N P A C G+N P A L A-K P S C G+K P C P S
\end{aligned}
$$

## Comment

Public sector gross investment is defined as investment gross of depreciation and sales of fixed assets.

No.	Name	Description	Unit	Source	Identifier
1232	DEP	Public Sector Depreciation	$£ M$	ONS	ANNZ

Model equation: Technical relationship (Identity)
$D E P=\quad$ RCGIM + RLAIM + PCCON

Comment: Identity sums total public sector depreciation.

No.	Name	Description	Unit	Source	Identifier
1233	PSNI	Public Sector Net Investment	$£ M$	ONS	-ANNW

Model equation: Technical relationship (Identity)
PSNI $=\quad$ PSGI - DEP - ASSETSA

Comment: Public sector net investment is net of depreciation and assets sales.

No.	Name	Description	Unit	Source	Identifier
1234	PSLSFA	Public Sector Loans \& Sales of financial	$£ M$	ONS	ANSU+ANSV

Model equation: Technical relationship (Identity)
PSLSFA $=$ LALEND + LAMISE + CGMISP - NPRIV + LCGOS + LCGPR + RPCBRO

No.	Name	Description	Unit	Source	Identifier
1235	PSACADJ	Public Sector accruals adjustments	$£ M$	ONS	ANSW+ANSX
				+ ANSY	

Model equation: Technical relationship (Identity)
PSACADJ $=$ MFTPC + CGACADJ - LAACADJ + RLABRO + RPCBRO

No.	Name	Description	Unit	Source	Identifier
1236	PSNW	Public Sector net wealth	$£ M$	ONS	CGTY

Model equation: Technical relationship (Identity)
PSNW $=\quad$ PSTA + PSFA - PSFL

No.	Name	Description	Unit	Source	Identifier
1237	PUBSTIW	Public Sector taxes on Income \& Wealth $£ M$	ONS	ANSO	

Model equation: Technical relationship (Identity)

```
PUBSTIW = - TYPCO - PFTC + TYEM + PRT + TSEOP + TCINV + WINDT + CT + CGT
```

    - NPISHTC + FCACA
    | No. | Name | Description | Unit | Source | Identifier |
| :--- | :--- | :--- | :--- | ---: | ---: |
| 1238 | PSTA | Stock of Public Sector Tangible Assets | $£ M$ | ONS | CGJA |

Model equation: Technical relationship
PSTA $=\quad \mathrm{g}$ PSTA $*$ PIF $/ \mathrm{g}$ PIF $+0.5 *$ PST ( $\mathrm{I}+\mathrm{GGID} / \mathrm{g}$ GGID $)$
PST $=\quad-K L A-K C G P S O-N P R I V P+K G L A P C+K C G P C+P S N I$

No.	Name	Description	Unit	Source	Identifier
1239	PSFA	Stock of Public Sector Financial Assets	$£ M$	ONS	NKFB+NPUP

Model equation: Technical relationship
PSFA $=\quad \mathrm{g}$ PSFA

No.	Name	Description	Unit	Source	Identifier
1240	CGGILTS	Stock of CG gilts excluding linkers	$£ M$	ONS	NIJI-V2027

Model equation: Technical relationship

```
CGGILTS \(=0.5 *(-N P R I V P-\) dILGILT- \((\mathrm{I}-\mathrm{g})\) NATSAV + PSNBNSA \()+\)
 (g CGGILTS + 0.5 * (-NPRIVP -d ILGILT -(I -g) NATSAV + PSNBNSA))
 * g CGRI / CGRI
\(\mathrm{CGRI}=\quad \mathrm{I}+0.0 \mathrm{I} *(0.67 * \mathrm{RL}+(\mathrm{I}-0.67) * \mathrm{RS})\)
```

No.	Name	Description	Unit	Source	Identifier
1241	OFLPS	Other Public Sector Financial Liabilities	$£ M$	HMT	NKIF+NPVQ
				- NIJI-ACUR	

Model equation: Technical relationship
OFLPS $=\mathrm{g}$ OFLPS

No.	Name	Description	Unit	Source	Identifier
1242	PSFL	Public Sector financial liabilities	$£ M$	ONS	NKIF+NPVQ

Model equation: Technical relationship (Identity)
PSFL $=\quad$ CGGILTS + OFLPS + NATSAV + REVIG

No.	Name	Description	Unit	Source	Identifier
1243	LARENT	LA rent receipts \& current transfers	$£ M$	ONS	ANBX

Model equation: Exogenous variable

No.	Name	Description	Unit	Source
1244	PCRENT	PC rent receipts \& current transfers	$£ M$	ONS

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
1245	PCLEND	PC net lending to private sector \& RoW	$£ M$	ONS	ANRY

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
1246	PCMISE	PC net acquisition of UK co. securities	$£ M$	ONS	ANRZ

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
1247	PCAC	PC accounts receivable/payable	$£ M$	ONS	ANVQ

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
1248	PCGILT	PC adjustment for interest on gilts	$£ M$	ONS	NCXS

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
1249	LAMFT	LA other financial transactions	$£ M$	ONS	ANMW

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
1250	CGACRES	CG accounts residual	£M	ONS	
	ANRT- $($ RUSD + ACJY + $(C Y N X+$ RUTC + DKHE + DBKE $)+(L N F P+C U L D)-B K T C+(D K H H+$ ZYBE $))$				

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
$125 I$	MKTIG	Market value of index-linked gilts	$£ M$	HMT	

Model equation: Technical relationship
$\operatorname{diff}($ MKTIG $)=\quad \operatorname{diff}($ REVIG $)$

No.	Name	Description	Unit	Source	Identifier
1252	CGLSFA	CG loans \& sales of financial assets	$£ M$	ONS	ANRH+ANRS

Model equation: Technical relationship (Identity)
CGLSFA $=$ CGMISP - NPRIVP + LCGOS + LCGPR

No.	Name	Description	Unit	Source	Identifier
1253	CGRENT	CG rent \& other current transfers	$£ M$	ONS	ANBU

Model equation: Exogenous variable


CGNDIV $=$ DIRCG + DVPSCG - DILACG - DIPCCG

No.	Name	Description	Unit	Source	Identifier
I255 LANDIV	LA interest \& dividends from Private   sector \& RoW	$£ M$	ONS	GVHF	

Model equation: Technical relationship (Identity)

```
LANDIV = DIRLA - DICGLA - DIPCLA
```

No.	Name	Description	Unit	Source	Identifier
1256	PCNDIV	PC interest \& dividends from Private   sector \& RoW	$£ M$	ONS	GVHG

Model equation: Technical relationship (Identity)
PCNDIV = DIPRPC

No.	Name	Description	Unit	Source	Identifier
1257	PSINTR	Public Sector interest \& dividend reciepts $£ M$	ONS	ANBQ	
	180		Version Mar'08		

Model equation: Technical relationship (Identity)

$$
\text { PSINTR }=\text { CGNDIV + LANDIV + PCNDIV }
$$

No.	Name	Description	Unit	Source	Identifier
1258	CGINTRA	CG net interest \& dividends from Public	$£ M$	ONS	ANNY
	Sector				

Model equation: Technical relationship (Identity)
CGINTRA = DILACG + DIPCCG + DVPCCG - DICGLA - DICGPC

No.	Name	Description	Unit	Source	Identifier
I259	LAINTRA	LA net interest \& dividends from Public	$£ M$	ONS	ANPZ
	Sector				

Model equation: Technical relationship (Identity)
LAINTRA $=$ DIPCLA + DICGLA + DVPCLA - DILACG - DILAPC

No.	Name	Description	Unit	Source	Identifier
1260	PCINTRA	PC net interest \& dividends from Public	$£ M$	ONS	ANRW
	Sector				

Model equation: Technical relationship (Identity)
PCINTRA = DILAPC + DICGPC - DIPCCG - DVPCCG - DIPCLA - DVPCLA

## GROUP FOURTEEN: DOMESTIC FINANCIAL SECTOR

This group covers domestic interest rates, asset prices, the monetary aggregates, borrowing and the determination of household sector wealth and Private Non-Financial Corporations' (PNFCs) liquidity.

## Interest rates and asset prices

The key interest rate variable is the three-month interbank rate, RS. There are four other identified nominal interest rates: the 20 year gilt yield, RL; the mortgage rate, RBM; the rate offered on 5 year National Savings certificates, RNS; and the rate on retail deposits, RDEP. There is also the real rate on long-term index-linked gilts, RILG. Equity prices, EQPR, are determined as a function of dividends and long-rates.

## Monetary aggregates

The narrow and broad money aggregates, M0 and M4, are determined by behavioural equations. M0 is a function of nominal GDP at market prices, the retail deposit rate and a time trend. M4 is primarily determined by gross financial wealth and a term in the interest differential (the own rate of return less the return on alternative assets).

## Borrowing

There are separate equations for persons' borrowing for house purchase and other borrowing. Borrowing for house purchase is a function of nominal gross physical wealth and the cost of housing finance. Other borrowing is determined by real disposable income, real net financial wealth and short rates. PNFCs' borrowing, an important determinant of net liquidity, is simply related to PNFCs' investment with a long-run unit elasticity and a term in the change in the effective exchange rate (which captures revaluation effects).

## Household sector wealth

Household sector net wealth is obtained by quasi-identity given the household sector NAFA (derived from the income-expenditure side of the model), gross assets and revaluations. Household gross financial wealth is determined by identity as net wealth plus liabilities.

## PNFCs' liquidity

PNFCs' gross liquid assets are obtained by quasi-identity given the flow of new borrowing, PNFCs' Net Acquisition of Financial Assets (NAFA) and exchange rate revaluations.

No.	Name	Description	Unit	Source	Identifier
I40I	RS	UK three month inter-bank rate	$\%$	ONS	AMIJ

Model equation: Exogenous variable

No.	Name	Description	Unit	Source	Identifier
1402	RL	UK twenty year gilt yield	$\%$	ONS	AJLX

Model equation: Behavioural equation
$R L=\quad g R L-0.12 * g\left(I-g^{2}\right) R L-0.062 I * g(R L-R S)$
$+0.23 *(\mathrm{I}-\mathrm{g}) \mathrm{RS}+[0.64+0.24 \mathrm{~g}](\mathrm{I}-\mathrm{g}) \mathrm{ROLT}$

- 6.6 * ( $\mathrm{I}-\mathrm{g}) \operatorname{Ln} \mathrm{RX}-0.86 *\left(\mathrm{I}-\mathrm{g}^{2}\right) \operatorname{Ln}$ EQPR - 0.039 (6.8)
(2.5)

Estimation period: I976QI-I999Q4
$\mathrm{R}^{2}=0.74$
Normality $\mathrm{CHI}^{2}=$
SE $=0.35$
Hetero F(I, 94) $=2.9$
$\operatorname{LMF}(4,85)=1.8$

## Summary of Equation Properties

Static long-run solution:
$R L=\quad R S$
Effect on RL of a $1 \%$ increase in:

	Q1	Q5	Q9	Long-run
Short Rate (RS)	0.23	0.37	0.50	1.00
World Long rate (ROLT)	0.64	0.63	0.50	0.00
Exchange rate (Ln RX)	-6.60	-4.60	-3.70	0.00
Equity Prices (Ln EQPR)	-0.86	-1.20	-1.00	0.00

## Comment

This equation is based on an arbitrage relationship between long and short-term interest rates. The dynamic term in the exchange rate attempts to capture anticipations of future inflation. Freely estimated, the error correction term was small albeit correctly signed and statistically significant. However, the implied dynamics were very slow and as a consequence a larger coefficient was validly imposed.

No.	Name	Description	Unit	Source	Identifier
I403	RDEP	Building Society deposit rate	$\%$	ONS	AJNV
		183			Version Mar'08

Model equation: Technical relationship

```
RDEP = (RMORT - I.04)
```

No.	Name	Description	Unit	Source	Identifier
1404	RNS	Rate of return on National Savings	$\%$	ONS	XACX/ACUA

Model equation: Behavioural equation
RNS $=\quad g R N S+0.493 *(1-g)(R D E P * g(I-T P B R Z))$
$+0.110 * g($ RDEP g (I - TPBRZ) - RNS $)-0.042$

## Summary of Equation Properties

Static long-run solution:
RNS $=$ RDEP $*(I-$ TPBRZ $)-0.042$

Comment: The return on national savings is determined as a function of building society rates, which may be thought of as representing the closest competitor in the retail deposits market. RNS is a post-tax rate. The data is an annualised rate of return from a 2 -quarter moving average.

No.	Name	Description	Unit	Source	Identifier
1405	RMORT	Building Soc. mortgage rate (repayment)	$\%$	ONS	AJNL

Model equation: Behavioural Equation
RMORT $=\mathrm{RS}+0.6$

No.	Name	Description	Unit	Source	Identifier
1406	EQPR	Equity price index (FT all-share)	Index	ONS	HSEL

Model equation: Behavioural Equation
$\operatorname{Ln} \mathrm{EQPR}=g \operatorname{Ln} \mathrm{EQPR}-0.24 * \operatorname{Ln}(g$ EQPR/NDIVHH) $-0.095 * \operatorname{Ln} \mathrm{RL}$
-0.069 * DD9934-0.22 * D874 + 0.33
$\mathrm{R}^{2}=0.27$
SE $=0.075$
$\operatorname{LM} F(4,42)=1.3$
Normality $\mathrm{CHI}^{2}=$
Hetero F(I,49) = 3.5
Estimation Period: 1987Q2-1999Q4

## Summary of Equation Properties

Static long-run solution:
Ln EQPR = Ln NDIVHH-0.4 Ln RL + constant
Effect on EQPR of a $1 \%$ increase in:

	Q1	Q5	Q9	Long-run
Dividends (Ln NDIVCO)	.24	0.75	0.94	1.00
Long rate (Ln RL)	-0.095	-0.30	-0.36	-0.40

Comment: The equation for equity prices is based on the present value principle, with equity prices being related to dividends and the long rate. The long run elasticity with respect to dividends is imposed at unity. This restriction was data acceptable.

No.	Name	Description	Unit	Source	Identifier
1407	RILG	Real interest rate on index linked gilts	$\%$	HMT	-

Model equation: Behavioural equation

$$
\begin{align*}
\text { RILG }= & \underset{(8.0)}{0.30082} \text { * }(\underset{(3.1)}{(0.60 * R S}+(\mathrm{I}-0.60) * \mathrm{RL})-(\text { ratio } 4(\mathrm{PR}) * I 00-\mathrm{I} 00)) \\
& +1.6229+0.64108 * \text { ifle }(199702) \tag{3.1}
\end{align*}
$$

Comment: The nominal interest rate is taken to be an appropriately weighted average of long and short rates; and the term in inflationary expectations necessary to convert to a real rate is modelled simply by annual RPI inflation. The technical relationship shown is the error-correction term from a freely-estimated ARDL(2) model over the period 1976Q4-2005Q2 with the functional form shown imposed; 5 observations were dummied.

No.	Name	Description	Unit	Source
I408	M0	Notes \& coins in circulation outside BoE	EM	ONS
		185		
		Version Mar'08		

Model equation: Behavioural Equation

$$
\begin{equation*}
\operatorname{Ln} \mathrm{M} 0=\operatorname{Ln} P G D P+g \operatorname{Ln}(\mathrm{M} 0 / \mathrm{PGDP})+0.20 * g(\mathrm{I}-\mathrm{g}) \operatorname{Ln}(\mathrm{M} 0 / \mathrm{PGDP}) \tag{2.5}
\end{equation*}
$$

$-0.1 * g \operatorname{Ln}($ M0/GDPM $*)+0.33 *\left(1-2 g+g^{2}\right) \operatorname{Ln}$ GDPM
$-0.004 * g\{R D E P * g(I-$ TPBRZ $)\}$
$-0.00086 * \min (28+\mathrm{T}, \mathrm{I} 28)-0.073+0.019 * \mathrm{D} 994$
(3.7)

Estimation period: 1975Q2 to 1999Q4
$\mathrm{R}^{2}=0.429$
$S E=0.008$
LM F(4,88) $=0.57$

DW $=2.0$
Normality $\mathrm{CHI}^{2}=4.0$
Hetero $\mathrm{F}(1,97)=0.05$

## Summary of Equation Properties

Static long-run solution:
$\operatorname{Ln} M 0=\operatorname{Ln}$ PGDP $+\operatorname{Ln}$ GDPM $-0.04 *$ RDEP $-0.0086 \min (T+28, I 28)+$ constant
Effect on MO of a $1 \%$ increase in:

	Q1	Q5	Q9	Long-run
Real GDP (GDPM)	0.33	0.36	0.63	1.00
GDP deflator (PGDP)	1.00	1.00	1.00	1.00
Deposit rate* (RDEP	0.00	-0.02	-0.03	-0.040
* Semi elasticity i.e. I per cent point change				

## Comment

M0 is conditioned on the market price GDP deflator, real GDP at market prices, the deposit rate and a time trend. Static homogeneity in prices and real GDP is imposed in the long run. The time trend is truncated in 1995ql reflecting the slow down in the decline of velocity.

Following reforms to the Bank of England's money market operations, production of MO data discontinued from May 2006. Hence narrow money i.e. M0 is defined here as notes \& coins in circulation outside the Bank of England and excludes banks' operational deposits that were formerly included in MO.

No.	Name	Description	Unit	Source	Identifier
1409	NFWPE	Household sector Net Financial Wealth	$£ M$	ONS	NZEA

Model equation: Technical relationship (Identity)
NFWPE $=-\mathrm{g}$ LHP -g OLPE - UNIDHH + NAFHH +

$$
[0.36 * E Q P R / g \text { EQPR + (0.06*WEQPR/g WEQPR + 0.02*g ROLT/ ROLT) } * \text { RXREV }
$$

$$
+0.11 \text { * g RL/ RL + } 0.07 * \text { PGDP/ g PGDP + 0.38] } * g(N F W P E+L H P+\text { OLPE })
$$

$R X R E V=0.43 * g R X D / R X D+0.57 * g R X / R X$

## Comment

Household sector net financial wealth is obtained by identity by cumulating the personal sector net acquisition of financial assets (determined from the income-expenditure side of the model) and revaluations after subtracting household sector unidentified transactions.

No.	Name	Description	Unit	Source	Identifier
1410	M4	M4 (end period), (FYSA)	$£ M$	ONS	AUYN

Model equation: Behavioural Equation
$\operatorname{Ln} \mathrm{M} 4=\operatorname{Ln}$ PCE $+\mathrm{g} \operatorname{Ln}(\mathrm{M} 4 / \mathrm{PCE})-0.043 * g \operatorname{Ln}(\mathrm{M} 4 / \mathrm{GFWPE})+0.31 * g(\mathrm{I}-\mathrm{g}) \operatorname{Ln}(\mathrm{M} 4 / \mathrm{PCE})$
+0.58 * (I-g) Ln GDPM + 0.0028 * (RS - 0.5 * (RS + RL))
-0.052 *D973-0.013-0.000236* $(28+\mathrm{T})$

Estimation Period: I986QI - I999Q4
$\mathrm{R}^{2}=0.63 \quad$ Normality $\mathrm{CHI}^{2}=2.3$
SE $=0.0086 \quad$ Hetero $F(1,54)=0.02$
$\operatorname{LM} F(4,45)=1.1$

## Summary of Equation Properties

Static long-run solution:
$\operatorname{LnM} 4=\operatorname{Ln}$ GFWPE $+0.065 *[\operatorname{RS}-0.5 *(R S+R L)]-.0054 *(28+T)+$ constant

Effect on M4 of a $1 \%$ increase in:

	Q1	Q5	Q9	Long-run
Consumers' expenditure deflator (PCE)	1.00	0.79	0.53	0.000
Financial wealth (GFWPE)	0.00	0.21	0.39	1.000
GDPM	0.58	0.68	0.53	0.000
Interest rate differential (RS $-0.5 *$ (RS + RL))	0.003	0.017	0.028	0.065

## Comment

The equation for M4 follows work carried out at NIESR and is based on a simple static model in which the share of M4 in some measure of wealth (W) is determined by relative rates of return:
$M 4 / W=f(R O-R A)$
where RO and RA are the own and alternative rates of return.

In the model equation the alternative rate of return is proxied by an average of short and long rates. The simple static relationship is modified by the presence of a lagged dependent variable that allows for adjustment costs and a term in the growth rate of real GDP which proxies transactions demand.

Further Documentation: MRG(94) I8

No.	Name	Description	Unit	Source	Identifier
1411	GFWPE	Household sector gross financial wealth	$£ M$	ONS	NNML

Model equation: Technical relationship
GWFPE $=$ NFWPE + LHP + OLPE

Comment: Household sector gross financial wealth is obtained by summing the stocks of financial wealth, households borrowing for house purchase (LHP) and households 'other' borrowing.

No.	Name	Description	Unit	Source	Identifier
1412	LHP	HH loans secured on dwellings	$£ M$	ONS	NNRP

Model equation: Behavioural Equation

$$
\begin{align*}
& \operatorname{Ln} \text { LHP }=\mathrm{g} \operatorname{Ln} \mathrm{LHP}+0.42 \mathrm{~g}(\mathrm{I}-\mathrm{g}) \operatorname{Ln} \text { LHP }-0.006 \mathrm{~g} \operatorname{Ln} \text { UNUKP }  \tag{3.6}\\
& -\underset{(4.8)}{-0.052} * \mathrm{~g} \mathrm{Ln}(\mathrm{LHP} / \mathrm{GPW})+0.09 \mathrm{I} *(\mathrm{I}-\mathrm{g}) \mathrm{Ln}(\mathrm{APH} / \mathrm{PCE})  \tag{2.6}\\
& \text { (4.8) }  \tag{3.6}\\
& -0.0017 * \text { RHF }+0.33+0.018 * \text { D902 - 0.012 *D884 } \\
& \text { (3.0) (4.7) (5.3) } \tag{3.1}
\end{align*}
$$

Estimation Period: 1987Q3 to 1999Q4
$\mathrm{R}^{2}=0.94$
DW $=2.2$
SE $=0.003$
Normality $\mathrm{CHI}^{2}=2.5$
$\operatorname{LM} F(4,38)=0.7$
Hetero $\mathrm{F}(\mathrm{I}, 48)=2.2$

## Summary of Equation Properties

Static long-run solution:
Ln LHP $=\operatorname{Ln}$ GPW - 0.033 * RHF - 0.11* Ln UNUKP + constant
Effect on LHP of a I\% increase in:

	Q1	Q5	Q9	Long-run
Gross physical wealth (GPW)	0.0000	0.0520	0.2410	1.000
Nominal interest on housing finance (RHF)	-0.0017	-0.0110	-0.0590	-0.033
Unemployment (UNUKP)	0.0000	-0.0380	-0.0590	-0.110

## Comment

The equation for loans for house purchase conditions on gross physical wealth with a long-run unit elasticity and the interest rate on housing finance, with a long-run semi-elasticity of -3.3 , and a dynamic term in real house prices.

No.	Name	Description	Unit	Source	Identifier
1413	OLPE	HH other financial liabilities	$£ M$	ONS	NNPP-NNRP

Model equation: Behavioural equation

$$
\begin{equation*}
\operatorname{Ln} \text { OLPE }=\operatorname{Ln} \text { PCE }+\mathrm{g} \operatorname{Ln}(\mathrm{OLPE} / P C E)+[0.37+0.2 \mathrm{I} \mathrm{~g}](\mathrm{I}-\mathrm{g}) \operatorname{Ln} \text { RHHDI } \tag{2.9}
\end{equation*}
$$

$-0.29 * \mathrm{~g} \operatorname{Ln}($ OLPE $/$ PCE $)-0.0016$ *g (RS $-100 *\left(\right.$ PCE $/ \mathrm{g}^{4}$ PCE -I$\left.)\right)$
-0.09 * g Ln UNUKP + 2.2895

Estimation Period: 1987Q3 to 1999Q4
$\mathrm{R}^{2}=0.60$
SE $=0.009$
DW $=1.72$
$\operatorname{LM} F(4,40)=0.40$
Normality $\mathrm{CHI}^{2}{ }_{2}=1.07$

Summary of Equation Properties
Static long-run solution:
$\operatorname{Ln}$ OLPE $=\operatorname{Ln}$ PCE $-0.0055 *\left[R S-100 *\left(\right.\right.$ PCE / g ${ }^{4}$ PCE -I) $]-0.31 *$ Ln UNUKP
Effect on OLPE of a $1 \%$ increase in:

	Q1	Q5	Q9	Long-run
Real personal disposable income (RPDI)	0.37	0.17	0.04	0.00
Unemployment (UNUKP)	0.000	-0.23	-0.29	-0.31
Real short-term interest rates	0.000	-0.004	-0.005	-0.0055

Comment: The equation for other lending to persons is conditional on real interest rates and unemployment. Static homogeneity of degree one in consumer prices is imposed.

No.	Name	Description	Unit	Source	Identifier
I4I5	LIQIC	PNFCs' stock of gross liquid assets	$£ M$	ONS	AIEL

Model equation: Technical relationship
LIQIC $=$ NAFIC $+(I-g)$ BBIC $+(I+0.18 *(R X V A L I-I)) g$ LIQIC

RXVALI $=0.2 * g R X / R X+0.8 * g R X D / R X D$

## Comment

PNFCs' gross liquid assets are obtained by quasi-identity given the flow of new borrowing, their Net Acquisition of Financial Assets (NAFIC) and an exchange rate revaluation term.

No.	Name	Description	Unit	Source	Identifier
1416	BBIC	Bank lending to PNFCs (all currencies)	$£ M$	ONS	NLBF+NLBG

Model equation: Behavioural equation
$\operatorname{Ln} \mathrm{BBIC}=\mathrm{g} \operatorname{Ln} \mathrm{BBIC}+0.3 \mathrm{I} 42 * \mathrm{~g}(\mathrm{I}-\mathrm{g}) \operatorname{Ln}$ BBIC $-0.08 \mathrm{I} 88^{*} \mathrm{~g} \operatorname{Ln}[B B I C /(D I N V *+I C C *)]$
+0.040 I * $(\mathrm{I}-\mathrm{g}) \operatorname{Ln}(\mathrm{DINV} *+\mathrm{ICC} *)-0.1936 *(\mathrm{I}-\mathrm{g}) \operatorname{Ln} \mathrm{RX}+0.2072$

Estimation Period: 1980QI to 1994Q3
$\mathrm{R}^{2}=0.5 \mathrm{I}$
DW =
SE $=0.024$
Normality $\mathrm{CHI}^{2}{ }_{2}=0.63$
LM $F(4,50)=0.99$
Hetero $\mathrm{F}(\mathrm{I}, 57)=7.8$

## Comment

BBIC is conditioned on a measure of PNFCs' expenditure, the sum of stockbuilding and investment in current prices, with a long-run unit elasticity and a term in the change in the effective exchange rate which captures revaluation effects.

No.	Name	Description	Unit	Source	Identifier
1417	UNIDPE	HH statistical adj. on financial account	$£ M$	ONS	NZDV

Model equation: Exogenous variable

## GROUP FIFTEEN: INCOME ACCOUNT

This group contains equations that determine the major components of household incomes: incomes from employment, self-employment incomes, dividend receipts and net interest receipts. Household sector saving is obtained by identity given total house expenditure in nominal terms, house disposable income and the net equity withdrawal from pension and life assurance funds. Company sector saving and net acquisition of financial assets are obtained by residual given the other financial balances.

No.	Name	Description	Unit	Source	Identifier
150 I WFP	UK wages \& salaries (inc. HM forces)	$£ M$	ONS	DTWM-ROYK	

Model equation: Technical relationship
WFP $=\mathrm{ADJW}$ *PSAVEI*(EPS $-\mathrm{ES}+\mathrm{EOIL})+0.049665 * E R C G * E C G+0.035689 * E R L A * E L A$

## Comment

The WFP quasi-identity combines the various sectoral wage bills - see comment under V0702. WFP is the most important component of income from employment and the largest identified component of household income.

No.	Name	Description	Unit	Source	Identifier
1502	MI	Mixed income	$£ M$	ONS	RNKX

Model equation: Behavioural equation

```
dlog(MI) = dlog(ES) - 0.066988* log(MI(-I)/(ES(-I)*PSAVEI(-I)))
\[
+0.3842 *(d \log (\mathrm{MI}(-\mathrm{I})) \text {-dlog(ES(-I)) }-0.207 \mathrm{I}+0.052 *(\text { ifeq(I9960I) }) \text { ifeq(I99602)) }
\]
- 0.040964*(ifeq(200002) - ifeq(200003)) - 0.040736*(ifeq(200I04) - ifeq(20020I))
Estimation Period: 1985QI - 2005Q3
```

$R^{2}=0.43$
SE $=0.014$
LM F $(4,59)=0.90$

DW $=1.5$
Normality $\mathrm{CHI}^{2}{ }_{2}=0.89$
Hetero $\mathrm{F}(\mathrm{I}, 8 \mathrm{I})=0.675$

```
Static long-run solution:
\(\operatorname{Ln} \mathrm{MI}=\quad \operatorname{Ln} \mathrm{ES}+\operatorname{Ln}\) PSAVEI + constant
Effect on MI of a I\% increase in:
\begin{tabular}{lrrrrr}
& & Q1 & Q5 & Q9 & Long-run \\
Private sector earnings (PSAVEI) & & 0.00 & 0.33 & 0.59 & 1.00 \\
& 192 & & & Version Mar'08
\end{tabular}
```


## Comment

Note that mixed income covers sole traders. It excludes partnership income that is included in profits under ESA95. The equation links 'average mixed incomes' to the private sector average earnings index with a long run unit elasticity.

No.	Name	Description	Unit	Source	Identifier
1503	FYEMP	Total compensation of employees	$£ M$	ONS	DTWM

Model equation: Technical relationship (Identity)
FYEMP = WFP + EMPSC

## Comment

Total employment income is the sum of the wage and salary bill and all employers' social contributions, including imputed contributions.

No.	Name	Description	Unit	Source	Identifier
1504	EMPSC	Employers' social contributions	$£ M$	ONS	ROYK

Model equation: Technical relationship (Identity)
$\mathrm{EMPSC}=\mathrm{EMPISC}+\mathrm{CGASC}+\mathrm{EMPNIC}+\mathrm{EMPCPP}$
Comment: This variable covers all employers' social contributions including imputed contributions, and contributions to pension schemes.

No.	Name	Description	Unit	Source	Identifier
1505	SVHH	Households' (\& NPISH) gross saving	$£ M$	ONS	RPQL

Model equation: Technical relationship (Identity)
SVHH $=$ HHDI $-\mathrm{C} £+$ NEAHH

## Comment

Household saving includes an adjustment for net equity in pension funds (NEAHH). This reflects the fact that the reserves of pension funds are treated as being owned by the household sector and that contributions to and pensions received from private funded schemes are treated as transfers in the secondary distribution of income account.

No.	Name	Description	Unit	Source	Identifier
1506	NAFHH	Net Acquisition of Financial Assets: HH	$£ M$	ONS	RPZT

Model equation: Technical relationship (Identity)

NAFHH $=$ SVHH + KGHH $-\mathrm{IHH} £-$ DINVHH - VALHH - NPAHH
Comment: The identity for households' Net Acquisition of Financial Assets (NAFA) is simply the household sector capital account identity.

No.	Name	Description	Unit	Source	Identifier
1507	HHDI	HH (\& NPISH) gross disposable income	$£ M$	ONS	RPHQ

Model equation: Technical relationship (Identity)

$$
\begin{aligned}
\mathrm{HHDI}= & \mathrm{MI}+\text { FYEMP }- \text { EMPSC }- \text { EESC }- \text { TYWHH }- \text { PIPHH }- \text { EECOMPD }+ \text { EECOMPC } \\
& + \text { NMTRHH }+ \text { SBHH }+ \text { PIRHH }+ \text { OSHH }+ \text { HHISC }- \text { HHSB }
\end{aligned}
$$

Comment: Household Disposable Income (HHDI) in current prices is obtained by summing the components of gross incomes and deducting taxes and social contributions.

No.	Name	Description	Unit	Source	Identifier
1508	RHHDI	HH (\& NPISH) real HHDI	$£ M$, CVM	ONS	NRJR

Model equation: Technical relationship (Identity)
RHHDI $=100 * H H D I / P C E$

Comment: Real household disposable income is defined as HHDI deflated by the consumer's expenditure deflator (PCE).

No.	Name	Description	Unit	Source	Identifier
1509	NAFCO	Net Acquisition of Financial Assets: Co's	$£ M$	ONS	RPYN+RQBV

Model equation: Technical relationship (Identity)
NAFCO = -NAFHH + PSNBCY + CB - MIKTA - OPSKTA - CGKTA + NPAA + SDE - SDI

Comment: Companies' net acquisitions of financial assets i.e. financial surplus or deficit Companies' is obtained by residual given the other sectoral NAFAs.

No.	Name	Description	Unit	Source	Identifier
1510	GTPIC	Gross PNFC trading profits (inc. NS)	$£ M$	ONS	CAGD+CAED

Model equation: Technical relationship
GTPIC $=\quad$ FYCPR

Comment: The equation is designed so that it computes as a residual: gross trading profits of financial companies. Since these are negative in the National Accounts, GTPIC is larger than FYCPR (VI6I8).

No.	Name	Description	Unit	Source	Identifier
1511	NAFFC	Net Acquisition of Fin. Assets: FINCOs	$£ M$	ONS	RPYN

Model equation: Exogenous variable
Comment: Financial companies' (FINCOs) net acquisition of financial assets i.e. financial surplus or deficit is exogenous and determines the PNFC NAFA by residual.

No.	Name	Description	Unit	Source	Identifier
$15 I 2$	NAFIC	Net Acquisition of Fin. Assets: PNFCs	$£ M$	ONS	RQBV

Model equation: Technical relationship (Identity)
NAFIC $=$ NAFCO - NAFFC

No.	Name	Description	Unit	Source	Identifier
1513	EMPCCP	Employers' contributions to   funded pension schemes	$£ M$	ONS	RNNG

Model equation: Technical relationship
ratio(EMPCPP) $=$ ratio(WFP)
Comment: Employer's contributions to private pension schemes and a component of adjustment for change in net equity in pension funds.

No.	Name	Description	Unit	Source	Identifier
1514	NDIVHH	HH \& NPISH dividend receipts	$£ M$	ONS	NRKU

Model equation: Behavioural equation

```
Ln NDIVHH = (I-0.I42) *g Ln NDIVHH - 0.2658 * g (I -g) Ln NDIVHH
 (4.9)
 +0.1420 *Ln 0.0833[(I + 3g}\mp@subsup{g}{}{2}+2\mp@subsup{g}{}{4})(I+g) YNODI]-0.25II *Ln THETA
 (4.9)
 +0.1918*(I-g)}\mp@subsup{)}{}{2}(\mathrm{ LIQIC / BBIC) + 0.5258 * SWCHD
 (I.6)
 + 0.4720 * PBD + 0.0495 * C872-0.3005
 (7.8)

Estimation period: 1964Q2 to 1993Q4 (recalibrated)
\begin{tabular}{|c|c|}
\hline \(\mathrm{R}^{2}=0.648\) & \(D W=2.17\) \\
\hline SE \(=0.085\) & Normality \(\mathrm{CHI}_{2}{ }_{2}=4.34\) \\
\hline LM F (4) \(=1.16\) & Hetero \(\mathrm{CHI}^{2}{ }_{1}=0.23\) \\
\hline YNODI = & NDIVHH + SAVCO * THETAN \\
\hline THETAN = & (1 - TPBRZ * THN) \\
\hline THN = I & from 1966Q4-1973QI (classical corporation tax system), zero otherwise \\
\hline THETA = & THETAN / [I-0.1 * TG / (0.I + 0.01 (RS + 2) (\(1-\) TPBRZ \()\))] \\
\hline TG \(=0.3\) & from 1965Q4-1982QI, zero otherwise \\
\hline
\end{tabular}

Static long-run solution:
Ln NDIVHH = Ln YNODI - I. 77 Ln THETA + constant
Effect on NDIVHH of a I\% increase in:
\begin{tabular}{lrrrr}
& QI & Q5 & Q9 & Long-run \\
Long-run Max. level of dividends (YNODI) & 0.012 & 0.229 & 0.517 & I .00 \\
Tax preference ratio (THETA) & -0.251 & -0.805 & -1.162 & -I .77 \\
PNFCs' net liquidity (LIQIC/BBIC) & 0.192 & -0.009 & -0.007 & 0.00
\end{tabular}

\section*{Comment}

The basic idea underlying this equation is that companies have a target or equilibrium level of dividend payments towards which they adjust. The target level of dividends is assumed to be a function of the maximum possible level of net dividends payable by companies, YNODI. The rather complicated distributed lag on this term arises from the fact that any quarter's actual dividend payments comprise of final dividend payments of companies with accounting years ending two quarters previously and interim payments from companies with accounting periods ending in a particular quarter, and that on average companies' total dividend payments are allocated in proportions I/3:2/3 between final and interim payments.

THETAN represents the opportunity cost of marginal retained earnings in terms of dividends foregone. This takes the value of zero from 1973Q2 onwards. THETA is the tax preference ratio defined as the opportunity cost of a marginal increase in retained earnings in terms of net dividends foregone with an allowance for the effective tax rate on capital gains (TG). The dummy variables attempt to capture the effects of regime change associated with dividend control. This equation was recalibrated on the adoption of ESA95.

\section*{Further Documentation}

CSRG(86) paper by Chris Kelly, MRG (94) 22, MSG (95) 14
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline \(15 I 5\) & STIPIC & PNFCs' Short-Term Interest Payments & £M & HMT & -
\end{tabular}

Model equation: Technical relationship
STIPIC \(=\quad\left((I+(R S+I .5) / I 00)^{\wedge}(I / 4)-I\right)^{*}(\) BBIC \((-I)-\operatorname{IDBILL}(-I))\)
\[
+\quad 0.8^{*}\left((1+(R S-0.3) / I 00)^{\wedge}(I / 4)-I\right)^{* I D B I L L}(-I) ;
\]
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1516 & WYQC & \begin{tabular}{l}
Withdrawals of income from quasi \\
corporations
\end{tabular} & \(£ M\) & ONS & NBOJ
\end{tabular}

Model equation: Technical relationship
WYQC \(=0.11791^{*}(\) GTPIC-NSGTP)

\section*{Comment}

Partnership income is a component of profits and hence defined as a component of property income under ESA95.
\begin{tabular}{llllrr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1517 & DIRHH & Total interest receipts of households & \(£ M\) & ONS & ROYM
\end{tabular}

Model equation: Technical relationship
DIRHH \(=0.5705^{*}\) M4(-I)*((I+(RDEP \(\left.\left.\left.-0.5 \mathrm{I}\right) / I 00\right)^{\wedge} .25-I\right)+\) DIPNSC
+ 0.1I63*DIPLDC + 0.0047II*CIPD ;
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1518 & DIPHH & Total interest payments by households & \(£ M\) & ONS & ROYU
\end{tabular}

Model equation: Technical relationship
DIPHH \(=\operatorname{LHP}(-I)^{*}\left((I+\text { RMORT } / I 00)^{\wedge} 0.25-I\right)\)
\[
+ \text { OLPE }(-I)^{*}\left((I+(R S+3.32) / I 00)^{\wedge} 0.25-I\right)+0.011014 * D I P D
\]

\section*{Comment}

The main components of household sector interest payments are those arising from borrowing for house purchase (LHP), and those arising from bank and other borrowing (OLPE).
\begin{tabular}{llllrr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1519 & KGHH & Households net capital transfers & \(£ M\) & ONS & RPVO+RPVP- \\
& & & & RPVS-RVPT
\end{tabular}

Model equation: Technical relationship
KGHH \(=\quad-\mathrm{INHT}+(\) MIKTFA - MIKTA \()+0.95 * K L A+0.55 * K C G P S O+0.4 * E U K T\)
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1520 & NEAHH & \begin{tabular}{l}
Adjustment for the change in net equity \\
of HH pension funds
\end{tabular} & \(£ M\) & ONS & RPQJ
\end{tabular}

Model equation: Technical relationship (Identity)
NEAHH \(=\) EMPCPP + EECPP - OSB
Comment: This variable represents contributions to less payments from private sector pension funds. See comment under VI505.
\begin{tabular}{llllrr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1521 & SAVCO & Company saving: PNFCs + FINCOs & \(£ M\) & ONS & RPKZ+RPPS
\end{tabular}

Model equation: Technical relationship (Identity)
\[
\begin{aligned}
\text { SAVCO }= & \text { NAFCO }+ \text { KGHH - DINVHH - DINVCG + DINV } £+\text { VAL } £-\text { VALHH - NPAHH } \\
& + \text { IF£ }- \text { KLA }- \text { KGPSO - LAI }- \text { CGI }+ \text { INHT }+ \text { KGLA }- \text { EUKT - MIKTFA + MIKTA } \\
& + \text { CGKTA + OPSKTA - NPAA - IPC - IBPC - NPACG - NPALA - IH } £
\end{aligned}
\]

Comment: Company sector savings are obtained by residual given the savings of other sectors.
\begin{tabular}{lllcr}
\hline No. & Name & Description & Unit & Source \\
\hline 1522 & NMTRHH & Net misc. transfer receipts of households \(£ M\) & ONS & RPHO-RPID
\end{tabular}

Model equation: Technical relationship
```

NMTRHH = LAOTRHH + (CGOTR-HHTCG) $+($ HHTFA-HHTA $)+(E U S F-G N P 4)+$
+ 0.003028*FYCPR

```
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1523 & EMPISC & Employers' imputed social contributions & \(£ M\) & ONS & NQDK
\end{tabular}

Model equation: Technical relationship
EMPISC \(=\) HHISC + LASC + CGISC \(+0.0036496 * W F P\)
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1524 & APIIH & \begin{tabular}{l}
Attributed Property Income of \\
Insurance policy Holders
\end{tabular} & \(£ M\) & ONS & ROYP
\end{tabular}

Model equation: Technical relationship
\[
\begin{aligned}
\mathrm{APIIH}= & 0.91 *(I I L G+I L G U P)+0.02805 *\left((I+(\text { RDEP }+0) / I 00)^{\wedge} .25-I\right)^{* M} 4(-I) \\
& +0.7700 * \text { DIPLDC }+0.1472 * \text { CIPD }+(I-0.2066)^{* N D I V H H}
\end{aligned}
\]
\begin{tabular}{lllllr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1525 & EESC & Employees social contribution & \(£ M\) & ONS & RPHX+RPHY
\end{tabular}

Model equation: Technical relationship (Identity)
\(\mathrm{EESC}=\quad \mathrm{EESCLA}+\mathrm{EENIC}+\mathrm{EECPP}+\mathrm{EESCCG}\)
\begin{tabular}{lllllr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1526 & SBHH & Household social benefits & \(£ M\) & ONS & RPHL
\end{tabular}

Model equation: Technical relationship (Identity)
\[
\begin{aligned}
S B H H= & E M P I S C+O S B+C G S B+\text { LASBHH }+ \text { EESCLA }+ \text { CGASC }+ \text { EESCCG } \\
& + \text { EUSF }- \text { BENAB }+ \text { HHSB }- \text { HHISC }
\end{aligned}
\]
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1527 & TYWHH & \begin{tabular}{l}
Household current taxes on income and \\
wealth
\end{tabular} & \(£ M\) & ONS & RPHS+RPHT
\end{tabular}

Model equation: Technical relationship (Identity)
TYWHH \(=\) TYEM + OHT + TSEOP \(+\mathrm{CC}+\mathrm{CGT}-0^{*}\) CGITFA \(+0 * I T A-\) NPISHTC
\begin{tabular}{lllcr}
\hline No. Name & Description & Unit & Source & Identifier \\
\hline I528 PIRHH & Household receipts of property income & \(£ M\) & ONS & ROYL
\end{tabular}

Model equation: Technical relationship
PIRHH \(=\) NDIVHH + WYQC + DIRHH + APIIH
Comment: The residual on this equation is household receipts of rent on land and sub-soil assets.
\begin{tabular}{lllcr}
\hline No. & Name & Description & Unit & Source \\
\hline 1529 & PIPHH & Household payments of property income \(£ M\) & ONS & ROYT
\end{tabular}

Model equation: Technical relationship
PIPHH \(=\) DIPHH

Comment: The residual on this equation is household payments of rent on land and sub-soil assets.
No. Name Description Unit Source Identifier
\begin{tabular}{lllll}
\hline 1530 OSB & \begin{tabular}{l}
HH private funded social benefits \\
(pensions)
\end{tabular} & \(£ M\) & ONS & RNLL
\end{tabular}

Model equation: Technical relationship
```

OSB = g OSB * PCE /g PCE

```
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1531 & NPISHTC & NPISH tax credits & \(£ M\) & ONS & -CFGW
\end{tabular}

Model equation: Exogenous variable
\begin{tabular}{llllrr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1532 & HHSB & Household social benefits & \(£ M\) & ONS & RPIA
\end{tabular}

Model equation: Technical relationship
HHSB \(=2 *\) HHISC
\begin{tabular}{llllrr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1533 & HHISC & Household imputed social contributions & £M & ONS & RVFH
\end{tabular}

Model equation: Technical relationship
HHISC \(=0.0008910 *\) WFP
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1534 & EECPP & Employees' pension contributions & \(£ M\) & ONS & RNNN
\end{tabular}

Model equation: Technical relationship
EECPP = APIIH

\section*{Comment}

The residual on this equation includes management fees and other expenses charged against employees' contributions.
\begin{tabular}{lllllr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1540 & SY & Households' saving ratio & \(£ M\) & ONS & NRJS
\end{tabular}

Model equation: Technical relationship
\(S Y=\quad 100 *(\mathrm{SVHH} /(\mathrm{NEAHH}+\mathrm{HHDI}))\)

\section*{GROUP SIXTEEN: GROSS DOMESTIC PRODUCT IDENTITIES}
\begin{tabular}{lllcr}
\hline No. & Name & Description & Unit & Source \\
\hline 1601 & BPA & Basic Price Adjustment at constant prices \(£ M\), CVM & ONS & NTAO
\end{tabular}

Model equation: Technical relationship
\(\mathrm{BPA}=\quad \mathrm{BPA}(-I) *\) ratio(GDPM)
\(B P A=0.1303 * C+0.0553^{*} C G G+0.0600 * I F+0.0148 * D I N V+0.0198 * X G+0.0284 * X S\)

\section*{Comment}

Previously the technical relationship for the Basic Price Adjustment at constant prices (BPA) was derived from the shares of taxes and subsidies in the expenditure components of GDP, the relationship is still shown for completeness and was updated from Tables 2 and 13 in the InputOutput Analytical Tables. However, it can be argued that the BPA has no effect on the volume of output and so the ONS now constrain GVA and GDP in chained volume terms to grow at the same rate - see Economic Trends February 2006.
\begin{tabular}{lllcrr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1602 & TFE & Total Final Expenditure at constant prices \(£ M, C V M\) & ONS & ABMG
\end{tabular}

Model equation: Technical relationship (Identity)
TFE =
\[
C G G+C+D I N V+V A L+I F+X
\]
\begin{tabular}{lllllr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1603 & GDPM & GDP at constant market prices & \(£ M\), CVM & ONS & ABMI
\end{tabular}

Model equation: Technical relationship (Identity)
GDPM \(=\) TFE + SDE \(-M\)
\begin{tabular}{lllrr}
\hline No. & Name & Description & Unit & Source \\
\hline 1604 & GVA & GVA at constant basic prices & \(£ M\), CVM & ONS
\end{tabular}

Model equation: Technical relationship (Identity)
GVA \(=\quad\) GDPM - BPA
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1605 & GVA£ & GVA at current basic prices & \(£ M\) & ONS & ABML
\end{tabular}

Model equation: Technical relationship (Identity)

GVA \(=\quad\) GDPM \(£-\) BPA \(£\)
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1606 & PGVA & Gross Value Added deflator & Index & ONS & CGBV
\end{tabular}

Model equation: Technical relationship (Identity)
PGVA \(=100 *(\) GVAE \(/\) GVA \()\)
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1607 & GDPM \(£\) & GDP at current market prices & \(£ M\) & ONS & YBHA
\end{tabular}

Model equation: Technical relationship (Identity)
GDPME \(=\) TFE \(-\mathrm{M} £+\mathrm{SDE}\)
\begin{tabular}{llllr}
\hline No. & Name & Description & Unit & Source \\
\hline 1608 & TFE & Total Final Expenditure at current prices & EM & ONS
\end{tabular}

Model equation: Technical relationship (Identity)
TFE \(£=\)
\(C £+\) DINV \(£+\) VAL \(£+I F £+C G G £+X £\)
Comment: This identity aggregates the components of current price final expenditure.
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1609 & BPA£ & Basic Price Adjustment at current prices & \(£ M\) & ONS & YBHA-ABML
\end{tabular}

Model equation: Technical relationship (Identity)
\[
\begin{aligned}
\text { BPAE }= & \text { TXFUEL + TXTOB + TXMIS + TSD + VREC + TXALC + EXDUTAC + } \\
& \text { XLAVAT + LAVAT + EUOT + NIS - EUSUBP - LASUBP - CGSUBP - CCLACA }
\end{aligned}
\]
\begin{tabular}{llllrr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1610 & PGDP & GDP at current market prices deflator & Index & ONS & YBGB
\end{tabular}

Model equation: Technical relationship (Identity)
PPGDP \(=100 *(G D P M £ /\) GDPM \()\)
\begin{tabular}{lllllr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1611 & NNSGVA & Non-North sea GVA & \(£ M\), CVM & ONS & UIZY
\end{tabular}

Model equation: Technical relationship (Identity)
NNSGVA = GVA - NSGVA
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1612 & MANGVA & Manufacturing GVA & Index & ONS & CKYY
\end{tabular}

Model equation: Behavioural equation
\[
\begin{align*}
& \operatorname{Ln} \text { MANGVA }=\operatorname{Ln} G V A+0.25 * g^{2}(\mathrm{I}-\mathrm{g}) \operatorname{Ln}(\text { MANGVA } / \mathrm{GVA}) \tag{2.1}\\
& +(I-0.149) * \operatorname{Ln}(\text { MANGVA / GVA) }-0.93302 \tag{2.7}\\
& \text { - } 0.0406 \text { * Ln RPRICE }-0.05 \text { I * (} \mathrm{I}-\mathrm{g} \text {) Ln RPRICE }-0.000403 \text { * (} \mathrm{T}+28 \text {) } \tag{2.5}\\
& \text { (1.5) } \tag{1.8}
\end{align*}
\]

Estimation period: I982QI to 200IQ4
\(\mathrm{R}^{2}=0.13\)
\[
D W=1.83
\]

Normality \(\mathrm{CHI}_{2}{ }_{2}=\)
Hetero \(\mathrm{CHI}^{2}{ }_{1}=\)

Comment: This equation assumes that manufacturing share in GVA is determined by competitiveness and a time trend.
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1613 & TPROD£ & Total taxes less subsidies on production & £M & ONS & CMVL-NTAP
\end{tabular}

Model equation: Technical relationship (Identity)
TPROD \(£=\) OPT + LAPT + NNDRA - CGSUBPR - LASUBPR - EUSUBPR

\section*{Comment}

ESA95 draws a distinction between taxes on production (which are a component of gross value added) and taxes on products. The latter are in the adjustment to basic prices.
\begin{tabular}{lllcr}
\hline No. & Name & Description & Unit & Source \\
\hline 1614 & GDPI & GDP Income measure at market prices & \(£ M\) & ONS
\end{tabular}

Model equation: Technical relationship (Identity)
GDPI \(=\quad\) GDPM \(£\)
\begin{tabular}{llllrr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1615 & CBIBC & CBI spare capacity indicator & Index & ONS & DCOW
\end{tabular}
(DKCE)
Model equation: Technical relationship
\(\operatorname{Ln}\) CBIBC \(=-1.9-5.5 * \operatorname{Ln}\left[G V A /\left(\sum_{i=0}^{27} \mathrm{~g}^{\mathrm{i}}\right.\right.\) IPS \(\left.)\right]-0.47 *\) DUM87I
Comment: Coefficients obtained by calibration in the light of simulation properties.
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1617 & OSHH & HH \& NPISH Gross Operating Surplus & £M & ONS & CAEN
\end{tabular}

Model equation: Technical relationship (Identity)
```

ratio(OSHH) = ratio(GDPME)

```

\section*{Comment}

This relationship assumes that the household sector operating surplus (mostly imputed rent and rental incomes) rises in line with nominal GDP.
\begin{tabular}{llllrr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1618 & FYCPR & Gross trading profits of all companies & \(£ M\) & ONS & CAGD+CAED \\
& & & & & + RITQ
\end{tabular}

Model equation: Technical relationship (Identity)
FYCPR \(=\) OS - OSHH - OSGG - OSPC - RENTCO + SA

Comment: Company sector profits are generated as a residual by subtracting the sectoral operating surpluses and company sector rental income from the whole economy operating surplus and adding stock appreciation.
\begin{tabular}{lllll}
\hline No. Name & Description & Unit & Source & Identifier \\
\hline
\end{tabular}
1619 SDE Statistical discrepancy: GDP (E) \(\quad\) EM, CVM \(\quad\) ONS \(\quad\) GIXS

Model equation: Exogenous variable
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1620 & OS & Whole economy Gross Operating & \(£ M\) & ONS & ABNG \\
& Surplus & & & &
\end{tabular}

Model equation: Technical relationship (Identity)
OS = GDPI - FYEMP - MI - BPA£ - TPROD \(£\) - SDI
\begin{tabular}{llllrr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1621 & TPROD & Total taxes less subsidies on production & \(£ M\), CVM & ONS & NTAI
\end{tabular}

Model equation: Technical relationship (Identity)
```

ratio(TPROD) = ratio(GVA)

```
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1622 & MGDPNSA & GDP at market prices (NSA) & \(£ M\) & ONS & BKTL
\end{tabular}

Model equation: Technical relationship (CY Identity)
MGDPNSA = GDPME
Comment: The seasonality is handled via the adjustment i.e. residual set on this equation.
\begin{tabular}{llllrr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1623 & CGG & General Government final consumption & \(£ M\), CVM & ONS & NMRY
\end{tabular}

Model equation: Technical relationship (Identity)
CGG \(=\quad 100 *(C G G £ / G G F C D)\)

\section*{Comment}

General government final consumption volumes are endogenously determined given cash values for the components that are formally exogenous and the deflator. This is a departure from previous versions of the model in which volumes were formally exogenous. Departure from current practice has been caused by changes in the way that the data for volumes is constructed. The equation may be inverted using a type 2 fix so as to determine the cash components endogenously.
\begin{tabular}{lllcr}
\hline No. & Name & Description & Unit & Source \\
\hline 1624 CGG£ & General Government final consumption & \(£ M\) & ONS & NMRP
\end{tabular}

Model equation: Technical relationship (Identity)
\(C G G E=(C G W S+L A W S)+(C G P+L A P R)+(R C G I M+\) RLAIM \()\)
\begin{tabular}{llllrr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1625 & RENTCO & Private Sector companies rental income & \(£ M\) & ONS & DTWS+FCBW
\end{tabular}

Model equation: Technical relationship
RENTCO = RENTCO(-I) * ratio(GDPM \(£\))
\begin{tabular}{llllrr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1626 & SDE & Statistical discrepancy: GDP (E) & \(£ M\) & ONS & GIXM
\end{tabular}

Model equation: Technical relationship
\(\operatorname{SDEE}=\quad \mathrm{PGDP} * S D E / / 00\)
\begin{tabular}{lllllr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1627 & SDI & Statistical discrepancy: GDP (I) & \(£ M\) & ONS & GIXQ
\end{tabular}

Model equation: Technical relationship
SDI \(=\quad\) SDI(-I)
\begin{tabular}{llllrr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1629 & GGFCD & GG Final Consumption Deflator & Index & ONS & I00*(NMRP \\
& & & & /NMRY)
\end{tabular}

Model equation: Technical relationship
\(\operatorname{Ln}\) CGFCD \(=(1-0.38) * \operatorname{Ln}(100 *(T F E *) /\) TFE \()+0.38 * \operatorname{Ln}[(E R L A) *(I+E M P S C / W F P)]\)
\[
\left.\begin{array}{ccc}
+\underset{(4.0)}{0.001} & *(\mathrm{~T}-68) & +\underset{(1.8)}{0.011})
\end{array}\right)
\]

Estimation period: I987Q2 I999Q।
\(\mathrm{R}^{2}=0.99\)
DW =
\(S E=0.01\)
\(\operatorname{LM} F(4,40)=1.6\)

Normality \(\mathrm{CHI}_{2}{ }_{2}=\)
Hetero \(\mathrm{CHI}^{2}=\)

\section*{Comment}

This equation assumes that the deflator for general government final consumption is determined by a weighted average of the TFE deflator and wage costs.
\begin{tabular}{lllllr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1630 & NOPROD & Non-oil productivity \((2003=100)\) & Index & HMT & -
\end{tabular}

Model equation: Technical relationship
NOPROD \(=\) NNSGVA/(0.07977I*(WFJ -EOIL))
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1631 & BCCCU & BCC capacity indicator & Index & BCC &
\end{tabular}

Model equation: Technical relationship
\(\mathrm{BCCCU}=100-\mathrm{CBIBC}\)
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1632 & GNI & Gross National Income at market prices & \(£ M\) & ONS & ABMZ
\end{tabular}

Model equation: Technical relationship (Identity)
GNIE = GDPM \(£+\) NIPD+(EECOMPC-EECOMPD) \(+(E U S U B P R+E U S U B P)-(E U O T+E U V A T)\)
\begin{tabular}{lllllr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1633 & GFC & Gross Domestic Product at factor cost & \(£ M\), CVM & ONS & YBHH \\
& & 209 & & & Version Mar'08
\end{tabular}

Model equation: Technical relationship (Identity)
GFC \(=\) GVA - TPROD
\begin{tabular}{lllcr}
\hline No. & Name & Description & Unit & Source \\
\hline 1634 & TFEX & Total Final Expenditure ex. MTIC, CVM & £M, CVM & ONS
\end{tabular}

Model equation: Technical relationship (Identity)
TFEX \(=\mathrm{CGG}+\mathrm{C}+\mathrm{DINV}+\mathrm{VAL}+\mathrm{IF}+(\mathrm{X}-\mathrm{XMTIC})\)
\begin{tabular}{llllrr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 1635 & TFEX & Total Final Expenditure ex. MTIC, cash & \(£ M\), cash & ONS & HMT
\end{tabular}

Model equation: Technical relationship (Identity)
TFE \(£ \mathrm{X}=\mathrm{CGG} £+\mathrm{C} £+\mathrm{DINV} £+\mathrm{VAL} £+\mathrm{IF} £+(\mathrm{X} £-\mathrm{XMTIC} £)\)

\section*{GROUP TWENTY: PUBLIC SECTOR BORROWING, DEBT \& FUNDING}

The group includes the variables related to public sector borrowing, the central government borrowing requirement, the public sector deficit and public sector debt. Most of the variables in the group relate to the financing of the Central Government Net Cash Requirement (CGNCR). These variables are used as determinants in the forecast of interest payments and receipts.

Up to 1995/96 the government aimed to 'fund' the Public Sector Borrowing Requirement (PSBR), which meant that it aimed to sell enough National Savings and gilts of three or more years maturity to fund the PSBR, maturing debt and any net increase in the foreign currency reserves. There was a policy change in from 1996/7 to move away from 'funding the PSBR' to 'financing the CGBR' which means that the government aims to sell sufficient gilts, Treasury bills and National Savings products to finance the CGBR, maturing debt and any net increase in the foreign exchange reserves. The maturity structure of the debt is determined each year and published in the Debt Management Report (DMR). There was an announcement in April 1996 to the effect that net debt sales of less than three years maturity would not be counted towards the financing of the CGBR in 1996/7.

\section*{Financing the CGNCR}

The model identifies the main instruments that contribute to the financing of the CGNCR: gilt sales (dGILT), index-linked gilt sales (dILGILT), National Savings (NATSAV), tax certificates (TXCERT), changes in the reserves (DRES), 'other external funding' (OXFPS), 'other CGBR financing' (OCGBR), coins (NCOIN), floating rate gilts (FLOATER), and Treasury bills (TBILLS).

Gilt sales are set as the residual source of CGNCR financing after all other forms of financing have been included. The excess of financing over the CGBR in any one year is defined as overfunding and accounted for by an appropriate setting of IDBILL in the following year (to force lower gilt sales). The opposite occurs with an underfund.

An Exogenous variable (REDGILT) allows for gilt redemptions. The revalued stock of index-linked gilts (REVIG) is also identified on the model.

\section*{Financing the LABR}

Transactions that finance the Local Authority Borrowing Requirement (LABR) comprise: central government net lending to Las (LCGLA) and LA net market borrowing (LABRO). LA net market borrowing is set by residual in this identity. The change in LA net market borrowing is then split between monetary assets (SLAM) and monetary liabilities (SLAB), with the former being set by residual.

\section*{Financing PCNB}

As with the LABR, the financing of the Public Corporations Net Borrowing (PCNB) is split between borrowing from central government, LCGPC and market borrowing (PCBRO) with the latter set by residual.
\begin{tabular}{llllrr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 2001 & LABRO & LA market borrowing (net CG/PC debt) & \(£ M\) & ONS & AAZK
\end{tabular}

Model equation: Technical relationship (Identity)
LABRO \(=\) LANB + LALEND + LAMISE - LCGLA - LAAC
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 2002 & LCGLA & Net lending by CG to LAs (NSA) & \(£ M\) & ONS & ABEC
\end{tabular}

Model equation: Exogenous variable
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 2003 & SLAB & Stock of LA market Borrowing (NSA) & \(£ M\) & ONS & \(* 9\)
\end{tabular}
*9 = ADKA-ADKE-ADKF+ADHA-ADHC
Model equation: Exogenous variable
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 2004 & SLAM & Stock of LA Monetary assets (NSA) & \(£ M\) & ONS & ADNA-ADNJ
\end{tabular}

Model equation: Technical relationship (Identity)
diff(SLAM) \(=\) diff(SLAB) - LABRO;

\section*{Comment}

The model is set up so that a change in LA monetary assets is the residual source of finance.
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 2005 & SLAPO & Private Sector debt held by LAs (NSA) & \(£ M\) & ONS & ADNJ+APEN+
\end{tabular}

RDLA

Model equation: Technical relationship (Identity)
diff(SLAPO) \(=\) LALEND

\section*{Comment}

The equation calculates the change in the stock of private sector debt held by local authorities as equal to the amount of new net lending to the private sector carried out by the local authorities.
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 2006 & LCGPC & Net lending by CG to PCs (NSA) & \(£ M\) & ONS & ABEI
\end{tabular}

Model equation: Exogenous variable
No. Name Description Unit Source Identifier

Model equation: Technical relationship (Identity)
\(\operatorname{diff}(S P C B C G)=\) LCGPC

\section*{Comment}

The stock of PC debt is affected by privatisations and the creation of NHS trusts, which need to be allowed for in the residual setting.
\begin{tabular}{llllrr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 2008 & SLCGPR & \begin{tabular}{l}
Stock of CG net lending to Private \\
Sector
\end{tabular} & \(£ M\) & ONS & RCPH+RDZU+ \\
& & & & READ+RMAT
\end{tabular}

Model equation: Technical relationship (Identity)
diff(SLCGPR) \(=\) LCGPR

\section*{Comment}

The corresponding flow variable is LCGPR (v952). However, sales of debt in privatised companies are treated as privatisation proceeds rather than net lending, so the stock has to be adjusted for these sales via the residual.
\begin{tabular}{lllllr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 2009 & PCNB & PC Net Borrowing (NSA) & \(£ M\) & ONS & -CPCM
\end{tabular}

Model equation: Technical relationship (Identity)
PCNB \(=\) TYPCO - OSPC + DIPCCG + DIPCLA + DVPCCG + DVPCLA - DIRPC - PCRENT
+ DIPCOP + IPC \(£\) + IBPC - KCGPC - KGLAPC + KPCPS - KPSPC ;
\begin{tabular}{llllr}
\hline No. & Name & Description & Unit & Source
\end{tabular} \begin{tabular}{ll}
Identifier \\
\hline 2010 & PCBRO
\end{tabular} \begin{tabular}{ll}
PC borrowing other than from CG (net & \(£ M\)
\end{tabular}

\section*{Comment}

This variable represents borrowing by public corporations other than that directly from central government. This includes other public sector borrowing, borrowing from banks and building societies, the private sector and the overseas sector. The model is set up so that this is the residual source of finance.
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 20II & COIN & Stock of currency (coins) & \(£ M\) & ONS & NIIK
\end{tabular}

Model equation: Technical relationship
```

ratio4(COIN) = ratio4(M0)

```

\section*{Comment}

The change in the level of coins is a CGNCR financing item - see Table I.2A, Financial Statistics.
\begin{tabular}{lllccr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 2012 & FLOATER & Stock of floating rate gilts & \(£ M\) & BoE & -
\end{tabular}

Model equation: Exogenous variable
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 2013 & CGNCR & CG Net Cash Requirement (NSA) & \(£ M\) & ONS & RUUW
\end{tabular}

Model equation: Technical relationship (Identity)
CGNCR \(=\) CGNB + CGLSFA + CGACADJ + LCGLA + LCGPC
Comment: This equation defines the central government net cash requirement.
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 2014 & PSNCR & \begin{tabular}{l}
Public Sector Net Cash Requirement \\
(FYSA)
\end{tabular} & \(£ M\) & ONS & RURQ
\end{tabular}

Model equation: Technical relationship (Identity)
PSNCR \(=\) PSNBNSA + PSLSFA + PSACAD \(J\)
\begin{tabular}{llllcl}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 2015 & CGOD & \begin{tabular}{l}
CG loans from monetary and financial \\
institutions
\end{tabular} & \(£ M\) & HMT &
\end{tabular}

Model equation: Exogenous variable
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 2016 & TXCERT & Tax certificates & \(£ M\) & ONS & ACRV
\end{tabular}

Model equation: Exogenous variable
\begin{tabular}{llllrr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 2017 & OXFPS & Other external funding of the CGNCR & \(£ M\) & ONS & -AACL-AACM
\end{tabular}

Model equation: Exogenous variable
\begin{tabular}{llllrr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 2018 & REDGILT & Redemptions of conventional gilts & \(£ M\) & ONS & -ACOX-ACOY
\end{tabular}

Model equation: Exogenous variable
\begin{tabular}{llllrr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 2019 & OCGBRF & Other CGNCR financing & \(£ M\) & ONS & -AACH-AACI- \\
& & & & ANTC
\end{tabular}

Model equation: Exogenous variable
\begin{tabular}{lllcr}
\hline No. & Name & Description & Unit & Source \\
\hline 2020 & IDBILL & Issue Dept holdings of commercial Bills & \(£ M\) & HMT \\
& & & & \\
Model equation: & \\
\end{tabular}
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 2021 & dILGILT & Net cash nominal issues of linkers & \(£ M\) & ONS & ACOV
\end{tabular}

Model equation: Technical relationship
dILGILT \(=0.29365^{*}(\) REDGILT + dGILT - REDILGILT \()+\) REDILGILT

\section*{Comment}

Issues of index-linked gilts are assumed to be a fixed proportion of gross gilt issues. When an index-linked gilt ('linker') is redeemed the nominal value must be deducted from dILGILT. The accrued uplift paid on redemption must be input on the cash uplift variable (ILGCSH, V0953).
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 2022 & NATSAV & Stock of National Savings & \(£ M\) & ONS & ACUA
\end{tabular}

Model equation: Technical relationship (Identity)
\(\operatorname{Ln}\) NATSAV \(=\operatorname{Ln}[(g\) NATSAV \(*\) GFWPE \() /(\mathrm{g}\) GFWPE \()]\)
+0.030757 * \(\left\{(\mathrm{I}-\mathrm{g}) \operatorname{RNS}(-2)-(\mathrm{I}-\mathrm{g})\left[\operatorname{RDEP}(-2)^{*}(\mathrm{I}-\operatorname{TPBRZ}(-3))\right]\right\}\)

Estimation Period: 1987QI to 2006Q3
\(\mathrm{R}^{2}=0.31\)
\(S E=0.0375\)
DW \(=1.75\)
\(\operatorname{LMF}(4,7 \mathrm{I})=0.33\)
Normality \(\mathrm{CHI}^{2}=0.608\)
Hetero \(\mathrm{F}(\mathrm{I}, 77)=0.068\)

\section*{Comment}

The equation for national savings is a pure difference equation conditioned on personal sector liquid assets with a unit coefficient and the differential between the rates of return on building society and bank deposits and national savings. Three [I,-I] dummies are omitted from the equation shown above but are included in the model coding.
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 2023 & dGILT & Total net purchases of gilts (all sectors) & \(£ M\) & ONS & ANTA
\end{tabular}

Model equation: Technical relationship (Identity)
```

dGILT = CGNCR - dCOIN - diff(TBILLS) - dNATSAV - diff(TXCERT)
- diff(CGOD) - OCGBRF - OXFPS - dOCGASS - DRES ;

```

\section*{Comment}

This equation is a quasi-identity for the funding rule. Gilt sales are assumed to be the residual source of financing the CGNCR.
\begin{tabular}{lllllr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 2024 & OCGASS & Other CG assets & \(£ M\) & ONS & BKSM+BKSN
\end{tabular}

Model equation: Exogenous variable

\section*{Comment}

These are the National Investment and Loans Office assets created by lending to LAs and PCs. Also contains CG bank and building society deposits.
\begin{tabular}{lllllr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 2025 & TBILLS & Stock of Treasury Bills & \(£ M\) & ONS & NIIV
\end{tabular}

Model equation: Exogenous variable
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 2026 & PSNBNSA & Public Sector Net Borrowing (NSA) & \(£ M\) & ONS & -ANNX
\end{tabular}

Model equation: Technical relationship (Identity)
PSNBNSA \(=-\mathrm{PSCB}+\mathrm{PSNI}\)
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 2027 & REVIG & Stock of linkers (inc. revaluations) & \(£ M\) & ONS & BKPL
\end{tabular}

Model equation: Technical relationship
REVIG \(=\) REVIG8 + REVIG3

\section*{Comment}

Financial Statistics table I.ID contains detail on the nominal amounts outstanding of central government sterling gross debt. REVIG cumulates issues of index-linked gilts (IGs) and revalues them in line with the RPI of seven months earlier. When an index-linked gilt is redeemed its effect on REVIG consists of two elements: the nominal value is captured through dILGILT but the accrued uplift paid on the residual must be subtracted via ILGCSH. REVIG itself consists of those linkers that are issued with an 8 m lag on RPI and the newer issuance that has a 3 m lag.
\begin{tabular}{lllllr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 2028 & GGNB & General Government Net Borrowing & \(£ M\) & ONS & -NNBK
\end{tabular}

Model equation: Technical relationship (Identity)
GGNB \(=\) CGNB + LANB
\begin{tabular}{lllllr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 2029 & NPSD & Net Public Sector Debt & \(£ M\) & ONS & BKQK
\end{tabular}

Model equation: Technical relationship
diff(NPSD) \(=\) PSNCR - ILGAC \(+\operatorname{diff(FLEASGG)~}+\operatorname{diff(FLEASPC)}\)
\begin{tabular}{llllrr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 2030 & PSNBCY & Public Sector financial deficit (CYSA) & \(£ M\) & ONS & -RQBN-RPZD
\end{tabular}

Model equation: Technical relationship (Identity)
PSNBCY = -PSCB + PSNI
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 2031 & GGLIQ & General Government Liquid Assets & \(£ M\) & ONS & BKQJ-BKSQ \\
& & & & & + BKSP-AIPD
\end{tabular}

Model equation: Technical relationship (Identity)
GGLIQ \(=\) OCGASS + LALIQ
\begin{tabular}{llllrr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 2032 & GGGD & General Government Gross Debt & \(£ M\) & ONS & BKPX
\end{tabular}

Model equation: Technical relationship (Identity)
\(\operatorname{diff}(G G G D)=\) CGNCR + LABRO - ILGAC \(+\operatorname{diff(SRES)~}+\operatorname{diff(GGLIQ)~}+\operatorname{diff(FLEASGG)}\)
\begin{tabular}{lllllr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 2033 & LALIQ & LA liquid assets & \(£ M\) & ONS & BKSO+BKQG
\end{tabular}

Model equation: Exogenous variable
\begin{tabular}{llllrr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 2034 & dNATSAV & CGNCR financing: Natl Savings & \(£ M\) & ONS & -AACE
\end{tabular}

Model equation: Technical relationship
dNATSAV \(=\quad\) diff(NATSAV)
Comment: This variable accommodates the discrepancy between the CGNCR financing flow and the stock of National Savings (NATSAV) that is due to a small timing adjustment.
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 2035 & dOCGASS & CGNCR financing: Other CG assets & \(£ M\) & ONS & ANTD+ANSZ
\end{tabular}

Model equation: Technical relationship
dOCGASS \(=\quad\) diff(OCGASS)
Comment: This variable accommodates the discrepancy between the CGNCR financing flow and the stock of other CG assets (OCGASS) that is due to a small timing adjustment.
\begin{tabular}{lllllr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 2036 & dCOIN & CGNCR financing: Coin & \(£ M\) & ONS & -EYMW
\end{tabular}

Model equation: Technical relationship
\(\mathrm{dCOIN}=\quad \operatorname{diff}(\mathrm{COIN})\)
Comment: This variable accommodates the discrepancy between the CGNCR financing flow and the stock of coin (COIN) due to scrapping.
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 2037 & REVIG3 & Stock of 3 m linkers (inc. revaluations) & \(£ M\) & HMT & -
\end{tabular}

Model equation: Technical relationship
```

REVIG3 $=\quad$ REVIG3(-I)*RPI3 + (dILGILT - REDILGILT) $*(I-0.25 *$ ifle(200702) $)$
*W RPI3 $=\quad(2 / 3 * P R+I / 3 * P R(-I)) /(2 / 3 * P R(-I)+I / 3 * P R(-2)) ;\{3 m$ lag uplift $\}$

```

Comment: This variable is the stock of linkers that have been issued with a 3-month lag on indexation, the equation includes an assumption about the proportion of future issuance that will have a 3 -month, as compared with an 8 -month, lag.
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 2038 & REVIG8 & Stock of 8 m linkers (inc. revaluations) & \(£ M\) & HMT & -
\end{tabular}

Model equation: Technical relationship
\[
\begin{aligned}
\text { REVIG8 }= & \text { REVIG8 }(-I) * \text { RPI8 }+(\text { REDILGILT }- \text { ILGCSH }) \\
& +0.25 * \text { ifle }(200702) *(\text { dILGILT }- \text { REDILGILT })
\end{aligned}
\]
\[
* \mathrm{~W} \text { RPI8 }=\quad(2 / 3 * \operatorname{PR}(-2)+\mathrm{I} / 3 * \operatorname{PR}(-3)) /(2 / 3 * \operatorname{PR}(-3)+\mathrm{I} / 3 * \operatorname{PR}(-4)) ;\{8 \mathrm{~m} \text { lag uplift }\}
\]

Comment: This variable is the stock of linkers that have been issued with an 8-month lag (the historical norm) on indexation, the equation includes an assumption about the proportion of future issuance that will have an 8 -month, as compared with a 3 -month, lag.
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 2039 & FLEASGG & Imputed GG debt from finance leases & \(£ M\) & ONS & F8YF+F8YH \\
2040 & FLEASPC & Imputed PC debt from finance leases & \(£ M\) & ONS & F8YJ
\end{tabular}

Model equation: Exogenous variables.
\begin{tabular}{llllcr}
\hline No. & Name & Description & Unit & Source & Identifier \\
\hline 204I & REDILGILT & Redemptions of index-linked gilts & \(£ M\) & HMT &
\end{tabular}

Model equation: Exogenous variable.
\begin{tabular}{lllccr}
\hline No. Name & Description & Unit & Source & Identifier \\
\hline 2042 & dCGOD & CGNCR financing: CG loans from MFIs & \(£ M\) & HMT & ANTB
\end{tabular}

Model equation: Technical relationship
dCGOD \(=\quad\) diff(CGOD)

\section*{ANNEX: ALPHABETICAL LISTING OF MODEL VARIABLES}
\begin{tabular}{|c|c|c|c|c|}
\hline No. & Name & Description & Unit & Source \\
\hline 0104 & A2029 & Numbers in Age cohort 20-29 & 000s & KABB \\
\hline 0702 & ADJW & Adjustment for wages \& salaries & Number & = HMT \\
\hline 0914 & AEG & Aggregate External Grant: CG to LA (inc. NNDR grant) & £M & = HMT \\
\hline 6003 & AL & Aggregates Levy & EM & MDUP \\
\hline 0736 & APH & Average House Price index & Index & =DCLG \\
\hline 1524 & APIIH & Attributed Property Income of Ins. Policy Holders & EM & ROYP \\
\hline 0968 & ASSETSA & Fixed asset sales by Public Sector & EM & = HMT \\
\hline 1104 & BAL & Balancing item in BoP account & EM & NYPO \\
\hline 1094 & BBC & Television licence tax & EM & DH7A \\
\hline 1416 & BBIC & Bank lending to PNFCs (all currencies) & EM & NLBF+NLBG \\
\hline 1631 & BCCCU & British Chambers of Commerce Capacity Utilisation & Index & = BCC \\
\hline 1134 & BENAB & Social security benefits paid abroad & EM & FLUK \\
\hline 1088 & BETLEVY & Betting levies scored as taxes on income \& wealth & EM & DW9E \\
\hline 1087 & BETPRF & Betting tax scored on income \& wealth & EM & MIYF \\
\hline 1601 & BPA & Basic Price Adjustment, CVM & EM, CVM & NTAO \\
\hline 1609 & BPAE & Basic Price Adjustment, cash & EM & YBHA-ABML \\
\hline 1043 & BRB & Basic Rate Band width (\(£, \mathrm{Q}\) rate) & E & = HMT \\
\hline 0205 & BV & Book value of inventories, end quarter & EM & = HMT \\
\hline 0105 & C & final Consumption expenditure: \(\mathrm{HH}+\) NPISH, CVM & EM, CVM & NPSP \\
\hline 0106 & C \(£\) & final Consumption expenditure: HH + NPISH, cash & EM & ABJQ+HAYE \\
\hline 1016 & CAPAL & Capital Allowances due (all companies) & EM & = HMT \\
\hline 1121 & CB & Current account Balance of Payments & EM & HBOP \\
\hline 1142 & CB\% & Current account Balance of Payments, \% GDP & \% & AA6H \\
\hline 1615 & CBIBC & CBI spare capacity indicator & Index & DKCE \\
\hline 1029 & CC & Community Charge (Council Tax) & EM & NMIS \\
\hline 1055 & CCACC & Community Charge Accruals adjustment & EM & -CDXW-ADDC \\
\hline 6004 & CCL & Climate Change Levy & EM & LSNS \\
\hline 1003 & CCLACA & Climate change \& aggregates levy accruals adjustment & EM & *1003 \\
\hline 0103 & CDUR & Consumers' expenditure on Durables, CVM & EM, CVM & UTID \\
\hline 0107 & CDURE & Consumers' expenditure on Durables, cash & EM & UTIB \\
\hline 6001 & CETAX & Customs \& Excise Taxes & EM & ACAC \\
\hline 1225 & CGACADJ & CG Accruals adjustments & EM & *1225 \\
\hline 1250 & CGACRES & CG Accounts residual & EM & *1250 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 0974 & CGASC & CG Actual Social Contributions & EM & GCMP \\
\hline 1077 & CGC & CG IPD credits (earnings on reserves) & EM & D69U \\
\hline 1109 & CGCBOP & CG earnings on reserves: scoring in BoP & EM & HHCC \\
\hline 0917 & CGCGLA & Total CG grants to LAs' & EM & QYJR \\
\hline 1623 & CGG & General Government final consumption, CVM & EM, CVM & NMRY \\
\hline 1624 & CGGE & General Government final consumption, cash & EM & NMRP \\
\hline 1240 & CGGILTS & Stock of CG gilts excluding linkers & EM & NIJI-V2027 \\
\hline 0906 & CGIE & Total Central Government GFCF & EM & NMES \\
\hline 1258 & CGINTRA & CG net interest \& dividends from Public Sector & EM & ANNY \\
\hline 1033 & CGISC & CG Imputed Social Contributions & EM & *1033 \\
\hline 1135 & CGITFA & CG tax receipts from abroad & EM & CGDN \\
\hline 1129 & CGKTA & CG capital transfers abroad & EM & FLWB \\
\hline 1252 & CGLSFA & CG Loans \& Sales of Financial Assets & EM & ANRH+ANRS \\
\hline 0942 & CGMISP & CG Miscellaneous Payments & EM & ANRS-ABIF \\
\hline 1223 & CGNB & CG Net Borrowing & EM & -NMFJ \\
\hline 0976 & CGNCGA & CG Net Current Grants Abroad & EM & GZSI \\
\hline 2013 & CGNCR & CG Net Cash Requirement (NSA) & EM & RUUW \\
\hline 1254 & CGNDIV & CG interest \& dividends from Private sector \& RoW & EM & GVHE \\
\hline 1063 & CGNDRA & NNDR end year adjustment & EM & LNFP+CULD \\
\hline 2015 & CGOD & CG loans from monetary \& financial institutions & EM & ANTB \\
\hline 0938 & CGOTR & CG Other current grants & EM & NMFC \\
\hline 0903 & CGP & CG Procurement expenditure & EM & QWPT \\
\hline 1253 & CGRENT & CG Rent \& other current transfers & EM & ANBU \\
\hline 0908 & CGSB & CG net Social Benefits to households & EM & GZSJ \\
\hline 0977 & CGSTOCK & CG net capital Stock, all fixed assets & EBn & CIXK \\
\hline 0935 & CGSUBP & CG Subsidies on Products & EM & NMCB \\
\hline 0936 & CGSUBPR & CG Subsidies on Production & EM & NMCC \\
\hline 1081 & CGT & Capital Gains Tax & EM & QYJX \\
\hline 0907 & CGTSUB & CG Total subsidies & EM & NMCD \\
\hline 0901 & CGWS & CG compensation of employees & EM & QWPS \\
\hline 1107 & CIPD & IPD credits & EM & *1107 \\
\hline 0309 & COC & Cost of Capital (private sector industry) & \% & = HMT \\
\hline 2011 & COIN & Notes and coins, end quarter & EM & NIIK \\
\hline 0972 & CONACC & Accruals adj. on conventional gilts & EM & -GCSW-GCMR \\
\hline 0721 & CPI & Consumer Prices Index, 1996=100 & Index & D7BT \\
\hline 0210 & CS & Real financing cost of stocks & \% & = HMT \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 0963 & CSS & Cyclical Social Security & EM & ABBV \\
\hline 1075 & CT & Corporation Tax & EM & *1075 \\
\hline 1066 & CTI & Old CT regime proportion & \% & = HMT \\
\hline 1067 & CT2 & New CT regime proportion & \% & = HMT \\
\hline 1086 & CTC & Children's Tax Credit & EM & -MDWZ \\
\hline 2041 & dCGOD & CGNCR financing: CG loans from MFIs & EM & ANTB \\
\hline 2036 & dCOIN & CGNCR financing: Coin & EM & -EYMW \\
\hline 1232 & DEP & Public Sector Depreciation & EM & ANNZ \\
\hline 2023 & dGILT & Total net purchases of gilts (all sectors) & EM & ANTA \\
\hline 0948 & DICGLA & CG debt interest payments to LAs & EM & NUHC \\
\hline 0912 & DICGOP & Total CG debt interest payments & EM & NMFX \\
\hline 0943 & DICGPC & CG debt interest payments to PCs & EM & *0943 \\
\hline 0944 & DILACG & LA debt interest payments to CG & EM & GVHA \\
\hline 0961 & DILAPC & LA debt interest payments to PCs & EM & CPBA \\
\hline 0931 & DILAPR & LA interest/dividends paid to private sector \& RoW & £M & NUGW \\
\hline 2021 & dILGILT & Net cash nominal issues of linkers & EM & ACOV \\
\hline 0204 & DINV & Change in inventories & EM, CVM & CAFU \\
\hline 0211 & DINVE & Change in inventories & EM & CAEX \\
\hline 0212 & DINVCG & CG change in inventories & EM & ANMY \\
\hline 0208 & DINVHH & HH change in inventories & EM & RPZX \\
\hline 0945 & DIPCCG & PC debt interest payments to CG & EM & GVHC-ZYHY \\
\hline 0947 & DIPCLA & PC debt interest payments to LAs & EM & GVHD-ZYHZ \\
\hline 1212 & DIPCOP & PC debt interest payments to RoW \& Priv. Sector & EM & GZSO \\
\hline 1108 & DIPD & IPD debits & \(E M\) & *1108 \\
\hline 1518 & DIPHH & Debt Interest Payments of HH & EM & ROYU \\
\hline 0911 & DIPLDC & Debt Interest Paid on conventional gilts & EM & CUEM-CMSU \\
\hline 0910 & DIPNSC & Debt Interest Payments on Natl Savings & EM & XACX \\
\hline 1206 & DIPRPC & PC interest receipts from Private Sector & EM & GVHG \\
\hline 1020 & DIRCG & Debt Interest Receipts of CG & EM & *1020 \\
\hline 1517 & DIRHH & Debt Interest Receipts of HH & EM & ROYM \\
\hline 1021 & DIRLA & Debt Interest Receipts of LA & EM & *1021 \\
\hline 1211 & DIRPC & Debt Interest Receipts of PC & EM & GVHH \\
\hline 0985 & DITHER & Other CG debt interest & EM & = HMT \\
\hline 1097 & DIVRCG & Total CG dividend receipts & EM & ZYIA+ZYHY \\
\hline 2034 & dNATSAV & CGNCR financing: Natl Savings & EM & -AACE \\
\hline 2035 & dOCGASS & CGNCR financing: Other CG assets & £M & ANTD+ANSZ \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1114 & DRES & Changes to foreign currency reserves & EM & AIPA \\
\hline 0706 & DUTRPI & Average rate of Duty on RROSSI & \% & = HMT \\
\hline 1213 & DVPCCG & PC dividend payments to CG & EM & ZYHY \\
\hline 1208 & DVPCLA & PC dividend payments to LA & EM & ZYHZ \\
\hline 1035 & DVPSCG & Dividends from Private Sector to CG & EM & ZYIA \\
\hline 0927 & ECG & CG non-trading employment (WFJ) & 000s & CULX(Q) \\
\hline 0921 & ECNET & Net EC contributions (BoP basis) & EM & -FKKL-FKIJ \\
\hline 1116 & ECUPO & Sterling/Euro exchange rate (Euros/ \(£\)) & Rate & THAP \\
\hline 0409 & ED & F/T home students: further \& higher education & 000s & = HMT \\
\hline 1122 & EECOMPC & Employees Compensation from abroad & EM & IJAH \\
\hline 1113 & EECOMPD & Employees Compensation due abroad & EM & IJAI \\
\hline 1534 & EECPP & Employees pension contributions & EM & RNNN \\
\hline 1008 & EENIC & Employees' payments of NICs & EM & AllH-CEAN \\
\hline 1056 & EENIR & Class I Employee NIC rate (weighted average) & \% & = HMT \\
\hline 1525 & EESC & Employee Social Contributions & EM & RPHX+RPHY \\
\hline 1044 & EESCCG & CG employee social contributions & EM & GITB+GVFJ \\
\hline 0971 & EESCLA & Employee contributions to LA pension schemes & EM & NMWM \\
\hline 0934 & ELA & LA non-trading employment (WFJ) & 000s & CUAN(Q) \\
\hline 1513 & EMPCPP & Employers' contributions to funded pension schemes & EM & RNNG \\
\hline 1523 & EMPISC & Employers' Imputed Social Contributions & EM & NQDK \\
\hline 1009 & EMPNIC & Employers' payments of NICs & EM & CEAN \\
\hline 1057 & EMPNIR & Class I Employer NIC rate (weighted average) & \% & = HMT \\
\hline 1504 & EMPSC & Employers' Social Contributions & EM & ROYK \\
\hline 0411 & EOIL & Offshore oil and gas employment & 000s & CGZH(Q)/1000 \\
\hline 0401 & EPS & Private Sector employment (inc. PCs) & 000s & *0401 \\
\hline 1406 & EQPR & Equity price index, (FT all-share) & Index & HSEL \\
\hline 0725 & ERCG & CG average earnings index, 2000 \(=100\) & Index & NMAI/C9K9(Q) \\
\hline 0726 & ERLA & LA average earnings index, 2000=100 & Index & NMJF/C9KA(Q) \\
\hline 0410 & ES & Employers and self employed (WFJ) & 000s & DYZN(Q) \\
\hline 0404 & ET & UK employed labour force (WFJ) & 000s & *0404 \\
\hline 0402 & ETLFS & LFS employment (inc. self -employed) & 000s & MGRZ \\
\hline 1126 & EUKT & Capital transfer payments from EU & EM & GTTY \\
\hline 1080 & EUOT & Payments of taxes on products to EU & £M & FJWE+FJWG \\
\hline 1131 & EUSF & Receipts from EU Social Fund & EM & H5U3 \\
\hline 1123 & EUSUBP & EU Subsidies on Products & EM & FKNG \\
\hline 1137 & EUSUBPR & EU Subsidies on Production & £M & FHLK (ZJZD) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 0969 & EUVAT & VAT payments to the EU & EM & HCML+FSVL \\
\hline 1005 & EXDUTAC & Excise Duty Accruals adjustments & EM & RUSD \\
\hline 1218 & FCACA & Financial Companies Accruals Adj. & EM & DKHH+ZYBE \\
\hline 0322 & FIB & First year investment allowance for Industrial Buildings & \% & = HMRC \\
\hline 2039 & FLEASGG & Imputed GG debt from finance leases & £M & F8YF+F8YH \\
\hline 2040 & FLEASPC & Imputed PC debt from finance leases & EM & F8YJ \\
\hline 2012 & FLOATER & Stock of floating rate gilts & EM & = HM T \\
\hline 0320 & FP & First year investment allowance for Plant \& machinery & \% & = HMRC \\
\hline 1618 & FYCPR & Gross trading profits of all companies & EM, CVM & *1618 \\
\hline 1503 & FYEMP & Total compensation of employees & EM & DTWM \\
\hline 1614 & GDPI & GDP Income measure at market prices & EM & YBHA \\
\hline 1603 & GDPM & GDP at market prices, CVM & EM, CVM & ABMI \\
\hline 1607 & GDPME & GDP at market prices, cash & EM & YBHA \\
\hline 1633 & GFC & Gross domestic product at Factor Cost & EM, CVM & YBHH \\
\hline 1411 & GFWPE & Household sector Gross Financial Wealth & EM & NNML \\
\hline 1629 & GGFCD & GG Final Consumption Deflator & Index & *1629 \\
\hline 2032 & GGGD & General Government Gross Debt & EM & BKPX \\
\hline 0306 & GGI & General Government GFCF & EM, CVM & DLWF \\
\hline 0304 & GGIE & General Government GFCF & EM & RNCZ+RNSM \\
\hline 0315 & GGIDEF & General Govt Investment Deflator & Index & *0315 \\
\hline 2031 & GGLIQ & General Government Liquid Assets & EM & *2031 \\
\hline 2028 & GGNB & General Government Net Borrowing & EM & -NNBK \\
\hline 1632 & GNIE & Gross National Income & EM & ABMZ \\
\hline 0964 & GNLDF & Lottery financed expenditure & EM & CJSW \\
\hline 1133 & GNP4 & UK fourth resource contribution to EU & EM & HCSO+HCSM \\
\hline 0326 & GPW & Household sector Gross Physical Wealth & £Bn & CGRP \\
\hline 1510 & GTPIC & Gross Trading Profits: PNFCs' (inc. NS) & EM & CAGD+CAED \\
\hline 1604 & GVA & GVA at basic prices, CVM & EM, CVM & ABMM \\
\hline 1605 & GVAE & GVA at basic prices, cash & EM & ABML \\
\hline 0742 & HD & Housing Depreciation index in RPI & Index & CHOO \\
\hline 1037 & HEENIR & Employee NICs higher rate & \% & = HMT \\
\hline 1507 & HHDI & HH (\& NPISH) gross Disposable Income & EM & RPHQ \\
\hline 1533 & HHISC & Household imputed Social Contributions & EM & RVFH \\
\hline 1532 & HHSB & Household Social Benefits & EM & RPIA \\
\hline 1125 & HHTA & Household Transfer payments Abroad & EM & *II25 \\
\hline 1072 & HHTCG & Household Transfers to CG & EM & NMEZ \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1124 & HHTFA & Household Transfer receipts from Abroad & EM & *1124 \\
\hline 0731 & HRRPW & LA gross rent per house per week (\(£\)) & E & =DCLG \\
\hline 1203 & IBPC & PC increase in stocks & EM & DHHL \\
\hline 0301 & IBUS & Business Investment & EM, CVM & NPEL \\
\hline 0314 & ICCE & Private Non-Financial Companies GFCF & EM & ROAW \\
\hline 0707 & ICOST & Investment Costs: I-O decompostion & Index & = HMT \\
\hline 2020 & IDBILL & Issue Dept holdings of Commercial Bills & EM & = \(\mathrm{HMT}^{\text {T }}\) \\
\hline 0308 & IF & Total Gross Fixed Capital Formation, CVM & EM, CVM & NPQT \\
\hline 0312 & IFE & Total Gross Fixed Capital Formation, cash & EM & NPQS \\
\hline 0327 & IFCE & Investment by Financial Companies & EM & RPYQ \\
\hline 0305 & IH & Private Sector investment in housing & EM, CVM & DFEA \\
\hline 0313 & IHHE & Households GFCF & EM & RPZW \\
\hline 0913 & IILG & Debt interest on index-linked gilts & EM & CMSU \\
\hline 1039 & ILGAC & Accruals adjustment on index linked gilts & EM & -NMQZ \\
\hline 0953 & ILGCSH & Index-Linked Gilts Cash uplift & EM & NMRB-NMQZ \\
\hline 0962 & ILGUP & Accrued uplift on index linked gilts & EM & NMRB \\
\hline 1038 & INCTAC & Income Tax Accruals Adjustment & EM & *1038 \\
\hline 1074 & INCTAXG & Income Tax Gross of tax credits & EM & LIPG \\
\hline 1027 & INHT & Inheritance Tax & EM & NMGI \\
\hline 1141 & INSURE & Non-life insurance premiums \& claims & EM & NHRX+FLYE \\
\hline 0201 & INV & Inventory levels, end quarter & EM, CVM & = \({ }^{\text {M }}\) T \\
\hline 1202 & IPCE & Investment by Public Corporations & EM & ANNQ \\
\hline 0317 & IPRL & Other private sector investment (transfer costs) & EM, CVM & DLWI \\
\hline 1136 & ITA & Tax payments abroad & EM & FLVE \\
\hline 0408 & IVB & Invalidity/Incapacity Benefit recipients & 000s & KJHB+KXDT \\
\hline 0919 & KCGLA & Capital grants: CG to LA & EM & NMGR+NMGT \\
\hline 1209 & KCGPC & Capital grants: CG to PC & EM & *1209 \\
\hline 0926 & KCGPSO & Capital grants: CG to Private Sector and RoW & EM & ANNI \\
\hline 1519 & KGHH & Households net capital transfers & EM & *1519 \\
\hline 1034 & KGLA & LA capital receipts from UK co. \& EU & EM & ANNO \\
\hline 1207 & KGLAPC & Capital grants: LA to PC & EM & ADCF \\
\hline 0939 & KID & No. of children receiving child benefit (GB) & 000s & BDAH \\
\hline 0916 & KLA & LA capital grants & EM & NMNL \\
\hline 1220 & KPCPS & Capital grants: PCs to the Private Sector & EM & ZMML \\
\hline 0956 & KPSCG & Capital grants: Private Sector to CG & EM & ANNN \\
\hline 1201 & KPSPC & PC capital transfers from the Private Sector & EM & ADSE \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1041 & LAAC & LA accruals adjustment (NSA) & EM & -ANML \\
\hline 2001 & LABRO & LA market borrowing net CG/PC debt & EM & AAZK \\
\hline 0930 & LAle & Investment by Local Authorities & EM & NMOA \\
\hline 1259 & LAINTRA & LA net interest \& dividends from Public Sector & EM & ANPZ \\
\hline 0915 & LALEND & LA net lending to personal sector & EM & ADDU \\
\hline 2033 & LALIQ & LA Liquid Assets & EM & BKSO+BKQG \\
\hline 1249 & LAMFT & LA Misc. Financial Transactions & EM & ANMW \\
\hline 0920 & LAMISE & LA Miscellaneous Expenditure & EM & LSIB \\
\hline 1226 & LANB & Local Authority Net Borrowing & EM & -NMOE \\
\hline 0986 & LANCGA & LA Net Current Grants Abroad & EM & C626 \\
\hline 1255 & LANDIV & LA interest \& dividends from Private sector \& RoW & EM & GVHF \\
\hline 0965 & LANDRAA & LA NNDR Accruals Adjustment & EM & CULD-CCXN \\
\hline 0959 & LANNDR & LA payments of NNDR & EM & CQOQ \\
\hline 0958 & LAOTRHH & LA Other Transfers to HH & EM & EBFE \\
\hline 0929 & LAPR & LA expenditure on Procurement & EM & QWRZ-NMKK \\
\hline 1083 & LAPT & LA receipts of Production Taxes & EM & NMYH \\
\hline 1243 & LARENT & LA Rent receipts \& current transfers & EM & ANBX \\
\hline 0918 & LASBHH & LA Social Benefits to Households & EM & GZSK \\
\hline 0949 & LASC & LA Social contributions & EM & GCMN \\
\hline 0978 & LASTOCK & LA net capital Stock, all fixed assets & EBn & CIXL \\
\hline 0904 & LASUBP & LA Subsidies on Products & EM & ADAK-LIUC \\
\hline 0937 & LASUBPR & LA Subsidies on Production & EM & LIUC \\
\hline 0941 & LATSUB & LA Total subsidies & EM & ADAK \\
\hline 1032 & LAVAT & VAT refunds to LAs & EM & CUCZ \\
\hline 0928 & LAWS & LA compensation of employees & EM & QWRY \\
\hline 2002 & LCGLA & Net lending by CG to LAs (NSA) & EM & ABEC \\
\hline 0951 & LCGOS & CG net lending overseas & EM & HEUC \\
\hline 2006 & LCGPC & Net lending by CG to PCs (NSA) & EM & ABEI \\
\hline 0952 & LCGPR & CG net lending to the Private Sector & EM & ANRH-HEUC \\
\hline 0416 & LFSUR & LFS Unemployment Rate (ILO) & \% & MGSX \\
\hline 1412 & LHP & HH loans secured on dwellings & EM & NNRP \\
\hline 1415 & LIQIC & PNFCs' stock of gross liquid assets & EM & AIEL \\
\hline 1010 & LL & Lower Earnings Limit for NICs (£, Q) & E & = \(\mathrm{HMT}^{\text {I }}\) \\
\hline 1042 & LRB & Lower Rate Band width (\(£, \mathrm{Q}\) rate) & E & = \(\mathrm{HMT}^{\text {T }}\) \\
\hline 0605 & M & Imports of goods and services, CVM & EM, CVM & IKBL \\
\hline 0609 & ME & Imports of goods and services, cash & EM & IKBI \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1408 & M0 & Notes \& coins in circulation outside BoE & ¢M & AVAB \\
\hline 0735 & MI4CP & Major 14 consumer prices & Index & = HMT \\
\hline 1118 & MI4GDP & GDP in Eurol I+US+Japan+Canada & EM & = HMT \\
\hline 1410 & M4 & M4 (end period), (FYSA) & EM & AUYN \\
\hline 1612 & MANGVA & Manufacturing GVA & EM, CVM & CKYY \\
\hline 1205 & MFTPC & PC Misc. Financial Transactions & £M & ANVU \\
\hline 1052 & MFTRAN & CG Misc. Financial Transactions & EM & -ANRV \\
\hline 1622 & MGDPNSA & GDP at market prices (NSA) & ¢M & BKTL \\
\hline 1502 & MI & Mixed Income & EM & RNKX \\
\hline 1128 & MIIKTA & Migrants capital Transfers Abroad & EM & FLWJ \\
\hline 1127 & MIKTFA & Migrants capital Transfers From Abroad & EM & FHJC \\
\hline 1068 & MILAPM & MIRAS, LAPRAS and PMI relief: receipts & EM & GCJG \\
\hline 1070 & MILAPME & MIRAS, LAPRAS and PMI relief: public expenditure & EM & *1070 \\
\hline 0506 & MKTGS & UK export markets for goods \& services & Index & = \(\mathrm{HMT}^{\text {T }}\) \\
\hline 1251 & MKTIG & Market value of index-linked gilts & EM & = HMT \\
\hline 0606 & MMTIC & MTIC fraud related imports, CVM & EM, CVM & *0606 \\
\hline 0608 & MMTICE & MTIC fraud related imports, cash & EM & *0608 \\
\hline 0601 & MNOS & Imports of Non-Oil goods and Services & EM, CVM & JTEA \\
\hline 0602 & MNOSX & Imports of Non-Oil goods and Services ex. MTIC & EM, CVM & *0602 \\
\hline 1084 & MOBACC & Spectrum accruals adjustment & EM & -BKTC \\
\hline 1085 & MOBREV & Spectrum accruals & EM & BKTK \\
\hline 0805 & MOIL & Imports of crude Oil and oil products & EM, CVM & BPIX \\
\hline 1509 & NAFCO & Net Acquisition of Financial Assets: Co's & EM & RPYN+RQBV \\
\hline 1511 & NAFFC & Net Acquisition of Fin. Assets: FINCOs & EM & RPYN \\
\hline 1506 & NAFHH & Net Acquisition of Fin. Assets: HH & EM & RPZT \\
\hline 1512 & NAFIC & Net Acquisition of Fin. Assets: PNFCs & EM & RQBV \\
\hline 1143 & NAFROW & Net lending by Rest of the World & EM & RQCH \\
\hline 2022 & NATSAV & Stock of National Savings & EM & ACUA \\
\hline 1514 & NDIVHH & HH \& NPISH dividend receipts & EM & NRKU \\
\hline 1520 & NEAHH & Adj. for change in net equity of HH pension funds & EM & RPQJ \\
\hline 1409 & NFWPE & Household sector Net Financial Wealth & EM & NZEA \\
\hline 1051 & NHNPTC & Non-household NPISH tax credits & EM & *105I \\
\hline 1036 & NICAC & National Insurance Accruals Adjustment & EM & ACJY \\
\hline 1110 & NIPD & Net inflow of IPD & EM & HBOM \\
\hline 1098 & NIS & Employers' Natl Insurance Surcharge & EM & GTAY \\
\hline 1522 & NMTRHH & Net Misc. Transfer Receipts of HH & EM & RPHO-RPID \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1064 & NNDACC & NNDR accruals adjustments & EM & *1064 \\
\hline 1030 & NNDRA & National Non-Domestic Rates Accruals & EM & CUKY \\
\hline 1015 & NNSCTP & Non-North Sea Corporation Tax Payments & EM & *1015 \\
\hline 1611 & NNSGVA & Non-North sea GVA, CVM & EM, CVM & UIZY \\
\hline 0925 & NOPENS & Number of pensioners (inc. widows) & 000s & BDAE \\
\hline 1630 & NOPROD & Non-Oil Productivity & Index & = \(\mathrm{HMT}^{\text {T }}\) \\
\hline 1132 & NPAA & Net acquisition of Non-Produced non-fin. Assets (land) & \(E M\) & FHJL-FLWT \\
\hline 0905 & NPACG & CG Net acquisition of Non-Produced non-fin. Assets & EM & NMFG \\
\hline 0311 & NPAHH & HH Net acquisition of Non-Produced non-fin. Assets & EM & RPZU \\
\hline 0933 & NPALA & LA Net acquisition of Non-Produced non-fin. Assets & EM & NMOD \\
\hline 1531 & NPISHTC & NPISH tax credits & EM & -CFGW \\
\hline 0950 & NPRIVP & Net Privatisation Proceeds & EM & -ABIF \\
\hline 2029 & NPSD & Net Public Sector Debt & EM & BKQK \\
\hline 1050 & NSACT & North Sea Advanced Corporation Tax & EM & = \({ }^{\text {M }}\) T \\
\hline 1013 & NSCTP & North Sea Corporation Tax Payments & EM & DBJY \\
\hline 0807 & NSGTP & North Sea Gross Trading Profits: PNFCs & EM & CAGD \\
\hline 0802 & NSGVA & GVA in North Sea oil \& gas extraction & EM, CVM & UJAD \\
\hline 1018 & NSROY & North Sea Royalties accruals & EM & ACEC \\
\hline 1076 & NTSSC & Net Taxes and Social Security Contributions & EM & = HMT \\
\hline 2024 & OCGASS & Other CG Assets & EM & BKSM+BKSN \\
\hline 2019 & OCGBRF & Other CGBR financing & EM & *2019 \\
\hline 1096 & OCT & Other Current Taxes & EM & NMCV-CQOQ \\
\hline 6005 & OFGEM & Tax levied by OFGEM & EM & E02E \\
\hline 1241 & OFLPS & Other Public Sector Financial Liabilities & EM & *1241 \\
\hline 1019 & OHT & Other Household Taxes on income & EM & *1019 \\
\hline 1413 & OLPE & HH other financial liabilities & EM & NNPP-NNRP \\
\hline 1130 & OPSKTA & Other Private Sector capital Transfers Abroad & EM & FLWI-FLWJ \\
\hline 1023 & OPT & Other Production Taxes & EM & NMBX-CUKY \\
\hline 1620 & OS & Gross Operating Surplus & EM, CVM & ABNG \\
\hline 1530 & OSB & HH private funded social benefits (pensions) & EM & RNLL \\
\hline 0970 & OSGG & Gross Operating Surplus: GG & EM & NMXV \\
\hline 1617 & OSHH & Gross Operating Surplus: HH & EM & CAEN \\
\hline 1204 & OSPC & Gross Operating Surplus: PC & EM & NRJT \\
\hline 0738 & OWC & Owner occupancy rate & \% & =DCLG \\
\hline 2017 & OXFPS & Other external funding of the PSBR & EM & -AACL-AACM \\
\hline 1095 & PASSPORT & Passport fees & EM & E8A6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 0809 & PBRENT & Brent crude oil Price (\$ per barrel) & \$ & =IMF \\
\hline 1247 & PCAC & PC Accounts receivable/payable & EM & ANVQ \\
\hline 2010 & PCBRO & PC market borrowing net CG/PC debt & EM & AAZL \\
\hline 1219 & PCCON & Total PC capital consumption & EM & NSRM \\
\hline 0703 & PCE & Consumers' expenditure deflator & Index & *0703 \\
\hline 1248 & PCGILT & PC adjustment for interest on gilts & EM & NCXS \\
\hline 0302 & PCIH & PC's investment in dwellings & EM, CVM & DKQH \\
\hline 1260 & PCINTRA & PC net interest \& dividends from Public Sector & EM & ANRW \\
\hline 0932 & PCLEB & PCs investment in Land and Existing Buildings & EM, CVM & DLWH \\
\hline 1245 & PCLEND & PC net lending to private sector \& RoW & EM & ANRY \\
\hline 1246 & PCMISE & PC net acquisition of UK co. securities & EM & ANRZ \\
\hline 2009 & PCNB & Public Corporations Net Borrowing (NSA) & EM & -CPCM \\
\hline 1256 & PCNDIV & PC interest \& dividends from Private sector \& RoW & EM & GVHG \\
\hline 0902 & PCOTC & Payable Company Tax Credits & EM & MDXH \\
\hline 1244 & PCRENT & PC rent receipts \& current transfers & EM & ANCW \\
\hline 1222 & PCSTOCK & PC net capital Stock, all fixed assets & £M & CIXJ \\
\hline 0727 & PCT & Rates/Community Charge RPI & Index & DOBR \\
\hline 0102 & PD & Property transactions (particulars delivered) & 000s & FTAQ \\
\hline 1217 & PFTC & Pension Fund Tax Credits & EM & -CFGS \\
\hline 1610 & PGDP & GDP at market prices deflator & Index & YBGB \\
\hline 1606 & PGVA & Gross Value Added deflator & Index & CGBV \\
\hline 0710 & PIF & Investment deflator (total GFCF) & Index & *0710 \\
\hline 0709 & PINV & Inventories deflator & Index & = HMT \\
\hline 1529 & PIPHH & Property Income Payments of HH & EM & ROYT \\
\hline 1528 & PIRHH & Property Income Receipts of HH & EM & ROYL \\
\hline 0718 & PMNOS & AVI: imports of non-oil goods \& services & Index & *0718 \\
\hline 0719 & PMNOSX & AVI: imports of non-oil goods \& services ex. MTIC & Index & *0719 \\
\hline 0806 & PMOIL & AVI for imports of oil & Index & *0806 \\
\hline 1082 & POISS & Profits On Issue of notes & EM & EYWM \\
\hline 0412 & POP & Total population of working age (LFS) & 000s & YBTF \\
\hline 0701 & PPIY & Producer output price index ex. taxes & Index & PVNQ \\
\hline 0708 & PR & Retail Prices Index (RPI) & Index & CHAW (FRAG) \\
\hline 0716 & PRENT & Rent component of the RPI & Index & DOBP \\
\hline 0712 & PRMIP & MIPs index in the RPI & Index & DOBQ \\
\hline 1017 & PRT & Petroleum Revenue Tax inc. advance PRT & EM & ACCJ \\
\hline 0713 & PRXMIP & RPI excluding MIPs & Index & CHMK \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1235 & PSACADJ & Public Sector Accruals Adjustments & EM & *1235 \\
\hline 0724 & PSAVEI & Private Sector Average Earnings Index & Index & LNKY \\
\hline 1230 & PSCB & Public Sector Current Budget & EM & ANMU \\
\hline 1229 & PSCE & Public Sector Current Expenditure & EM & ANLT \\
\hline 1228 & PSCR & Public Sector Current Receipts & £M & ANBT \\
\hline 1239 & PSFA & Public Sector Financial Assets & EM & NKFB+NPUP \\
\hline 1242 & PSFL & Public Sector Financial Liabilities & EM & NKIF+NPVQ \\
\hline 1231 & PSGI & Public Sector Gross Investment & EM & = HMT \\
\hline 1257 & PSINTR & Public Sector interest \& dividend receipts & EM & ANBQ \\
\hline 1234 & PSLSFA & Public Sector Loans \& Sales of Financial Assets & EM & ANSU+ANSV \\
\hline 2030 & PSNBCY & Public Sector Net Borrowing (CYSA) & EM & -RQBN-RPZD \\
\hline 2026 & PSNBNSA & Public Sector Net Borrowing (NSA) & EM & -ANNX \\
\hline 2014 & PSNCR & Public Sector Net Cash Requirement (FYSA) & EM & RURQ \\
\hline 1233 & PSNI & Public Sector Net Investment & EM & -ANNW \\
\hline 1236 & PSNW & Public Sector Net Wealth & EM & CGTY \\
\hline 1238 & PSTA & Public Sector Tangible Assets & EM & CGJA \\
\hline 1237 & PUBSTIW & Public Sector taxes: Income \& Wealth & EM & ANSO \\
\hline 1214 & PUBSTPD & Public Sector taxes: Production \& imports & EM & NMYE \\
\hline 0714 & PXNO & AVI for exports of Non-Oil goods & Index & *0714 \\
\hline 0804 & PXOIL & AVI for exports of Oil & Index & *0804 \\
\hline 0717 & PXS & AVI for exports of Services & Index & *07I7 \\
\hline 0924 & RCGIM & CG non-trading capital consumption & EM & NSRN \\
\hline 1403 & RDEP & Building Society deposit rate & \% & AJNV \\
\hline 2018 & REDGILT & Redemptions of conventional gilts & EM & -ACOX-ACOY \\
\hline 2042 & REDILGILT & Redemptions of index-linked gilts & EM & = \(\mathrm{HMT}^{\text {T }}\) \\
\hline 0957 & REDOTH & Interest on gilts redeemed \& other flows & EM & = \(\mathrm{HMT}^{\text {T }}\) \\
\hline 1625 & RENTCO & Private Sector companies rental income & EM & DTWS+FCBW \\
\hline 2027 & REVIG & Stock of linkers (inc. revaluations) & EM & BKPL \\
\hline 2037 & REVIG3 & Stock of 3m linkers (inc. revaluations) & EM & = \(\mathrm{HMT}^{\text {T }}\) \\
\hline 2038 & REVIG8 & Stock of 8m linkers (inc. revaluations) & EM & = \(\mathrm{HMT}^{\text {T }}\) \\
\hline 6007 & RFP & Rail franchise premia & \% & LITT \\
\hline 0737 & RHF & Real interest rate on Housing Finance & \% & = HMT \\
\hline 1508 & RHHDI & Real HH (\& NPISH) Disposable Income & £M, CVM & NRJR \\
\hline 1407 & RILG & Real interest rate on Index-Linked Gilts & \% & = HMT \\
\hline 1402 & RL & UK twenty year gilt yield & \% & AJLX \\
\hline 0940 & RLAIM & LA non-trading capital consumption & £M & NSRO \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 0954 & RLCOTC & Reduced Liability Company Tax Credits & EM & JPPT-MDXH \\
\hline 1405 & RMORT & Building Soc. mortgage rate (repayment) & \% & AJNL \\
\hline 1040 & RNCG & CG total rent receipts (ex. capital consumption) & EM & *1040 \\
\hline 1404 & RNS & Rate of return on National Savings & \% & XACXIACUA \\
\hline 1079 & ROCs & Renewable Obligation Certificates (tax on products) & EM & EP89 \\
\hline 1112 & ROLT & GDP weighted 10y interest rate: G7 \& Eurol I & \% & = \(\mathrm{HMT}^{\text {T }}\) \\
\hline 1115 & ROSHT & GDP weighted 3m interest rate: G7 \& Eurol I & \% & = \(\mathrm{HMT}^{\text {T }}\) \\
\hline 0704 & RPCOST & Index of Retail Price Costs & Index & = \(\mathrm{HMT}^{\text {T }}\) \\
\hline 0512 & RPRICE & Relative export prices & Index & CTPC \\
\hline 0711 & RPTAX & Average tax rate on RROSSI & \% & = HMT \\
\hline 0705 & RROSSI & ROSSI: RPI ex. MIPs, council tax and rents & Index & GUMF \\
\hline 1401 & RS & UK interbank rate: 3m LIBOR & EM & AMIJ \\
\hline 1106 & RSA & Rate of return on Stock of Assets & \% & = \({ }^{\text {M }}\) T \\
\hline 1105 & RSL & Rate of return on Stock of Liabilities & \% & = \(\mathrm{HMT}^{\text {T }}\) \\
\hline 1119 & RX & Sterling effective exchange rate & Index & BK67 \\
\hline 1120 & RXD & Sterling - dollar cross rate & Rate & AUSS \\
\hline 1117 & RXE & Expected exchange rate & Rate & AGBG(+I) \\
\hline 0206 & SA & Stock Appreciation (inventories) & EM & DLRA+EQCB \\
\hline 1101 & SAS & Stock of Assets & EM & * 1101 \\
\hline 1521 & SAVCO & Saving of Companies: PNFCs + FINCOs & EM & RPKZ+RPPS \\
\hline 1526 & SBHH & Household Social Benefits & EM & RPHL \\
\hline 1099 & SC & Supplementary Charge on North Sea profits & \% & = HMT \\
\hline 1619 & SDE & Statistical discrepancy: GDP (E) & EM, CVM & GIXS \\
\hline 1626 & SDE \(£\) & Statistical discrepancy: GDP (E) & EM & GIXM \\
\hline 1627 & SDI & Statistical discrepancy: GDP (I) & EM & GIXQ \\
\hline 6006 & SENIR & Self-Employed class 4 NIC Rate & \% & = \({ }^{\text {M }}\) T \\
\hline 0323 & SIB & Annual investment allowance for Industrial Buildings & \% & = HMRC \\
\hline 1007 & SIBICC & Total allowances on PNFCs investment in Buildings & EM & = HMT \\
\hline 1102 & SL & Stock of Liabilities & EM & *1102 \\
\hline 2003 & SLAB & Stock of LA market borrowing(NSA) & EM & *2003 \\
\hline 2004 & SLAM & Stock of LA monetary assets (NSA) & EM & ADNA-ADNJ \\
\hline 2005 & SLAPO & Private Sector debt held by LAs (NSA) & EM & *2005 \\
\hline 0946 & SLCGLA & Stock of LA debt held by CG & EM & *0946 \\
\hline 2008 & SLCGPR & Stock of CG net lending to Private Sector & EM & *2008 \\
\hline 0321 & SP & Annual investment allowance for Plant \& machinery & \% & = HMRC \\
\hline 2007 & SPCBCG & Stock of PC debt held by CG & EM & AKSG \\
\hline
\end{tabular}
\begin{tabular}{lllr}
0607 & SPECX & Trend Specialisation in world trade \& ind. production & Index \\
1103 & SRES & Stock of total official Reserves & EM \\
1515 & STIPIC & Short-Term Interest Payments: PNFCs & LTEB \\
0324 & SV & Rate of annual writing down allowance on vehicles & \(\%\) \\
1505 & SVHH & Households' \((\) NPISH) gross saving & =HMT \\
1078 & SWAPS & Swap adjustments & \(£ M\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1058 & TVAT & VAT rate & \% & = \(\mathrm{HMT}^{\text {T }}\) \\
\hline 1006 & TXALC & Alcohol duties: spirits, beer, wine and cider & EM & ACDF/G/H/I \\
\hline 2016 & TXCERT & Tax certificates & £M & ACRV \\
\hline 6002 & TXCUS & Misc. Customs and Excise taxes & £M & *6002 \\
\hline 1014 & TXFUEL & Hydrocarbon oils duty receipts & EM & ACDD \\
\hline 1028 & TXKCO & CG receipts of capital taxes on companies & EM & DKGZ \\
\hline 1024 & TXMIS & Misc. expenditure taxes & EM & *1024 \\
\hline 1022 & TXTOB & Tobacco duty & EM & ACDE \\
\hline 1002 & TYEM & Taxes on income from employment & EM & DBBO \\
\hline 1215 & TYPCO & PC onshore corporation tax payments & EM & FCCS \\
\hline 1527 & TYWHH & HH current taxes on income and wealth & ¢M & RPHS+RPHT \\
\hline 0406 & U & Claimant count unemployment & 000s & BCJD \\
\hline 0739 & UDEN & Union density (constant from 1980q4) & \% & = \(\mathrm{HMT}^{\text {T }}\) \\
\hline 1011 & UL & Upper Earnings Limit for NICs (\(£, \mathrm{Q}\)) & ¢ & = \(\mathrm{HMT}^{\text {T }}\) \\
\hline 0715 & ULCPS & Private Sector Unit Labour Costs & Index & = \({ }^{\text {M }}\) T \\
\hline 0405 & ULFS & LFS Unemployment (ILO) & 000s & MGSC \\
\hline 1417 & UNIDPE & HH stat. adjustment on financial account & ¢M & NZDV \\
\hline 0407 & UNUKP & Claimant count unemployment rate & \% & BCJE \\
\hline 0923 & UPLIFT & Uprating factor for cyclical social security benefits & Index & = HM T \\
\hline 0909 & UPRAT & Uprating for non-cyclical social security benefits & Index & = \(\mathrm{HMT}^{\text {T }}\) \\
\hline 0303 & VAL & Net acquisitions of valuables, CVM & EM, CVM & NPJR \\
\hline 0307 & VALE & Net acquisitions of valuables, cash & EM & NPJQ \\
\hline 0310 & VALHH & Net acquisitions of valuables: HH & EM & RPZY \\
\hline 1059 & VATFACI & VAT-able durables consumption & \% & = HMRC \\
\hline 1060 & VATFAC2 & VAT-able non-durables consumption & \% & = HMRC \\
\hline 1091 & VED & Vehicle Excise Duty & EM & GTAX \\
\hline 1093 & VEDCO & VED paid by companies and non-HH & EM & GTAX-CDDZ \\
\hline 1092 & VEDHH & VED paid by households & EM & CDDZ \\
\hline 1004 & VREC & VAT Receipts & EM & EYOO \\
\hline 1069 & VTR & Vocational Training Relief: receipts & EM & -MDUF \\
\hline 1071 & VTRCS & VTR \& other reliefs: public expenditure & EM & *1071 \\
\hline 1111 & WEQPR & World equity prices:G6+Spain, GDP weighted & Index & = \(\mathrm{HMT}^{\text {T }}\) \\
\hline 0414 & WFJ & Workforce in employment (WFJ) & 000s & DYDC(Q) \\
\hline 1501 & WFP & UK wages \& salaries (inc. HM forces) & EM & DTWM-ROYK \\
\hline 0955 & WFTCNT & WFTC scoring as Negative Tax & EM & LIBJ-MDYM \\
\hline 0967 & WFTCPE & WFTC scoring as Public Expenditure & EM & LIBJ \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 1065 & WINDT & Windfall tax receipts & EM & EYNK \\
\hline 0734 & WPBM & World Price of Basic Materials (\$) & Index & = HMT \\
\hline 0733 & WPG & World price of goods & Index & = \(\mathrm{HMT}^{\text {T }}\) \\
\hline 0413 & WRGTP & Work Related Govt Training Programmes & 000s & LOJU(Q) \\
\hline 1054 & WTCCTC & Working and Children's Tax Credit & EM & MDYN \\
\hline 0510 & WTGS & World Trade in non-oil Goods \& Services & Index & = HMT \\
\hline 1516 & WYQC & Withdrawal of income from Quasi-Corporations & EM & NBOJ \\
\hline 0505 & X & Exports of goods and services, CVM & EM, CVM & IKBK \\
\hline 0507 & X & Exports of goods and services, cash & EM & IKBH \\
\hline 0504 & XG & Total exports of goods & EM, CVM & BQKQ \\
\hline 1031 & XLAVAT & VAT refunds (except to LA) & EM & CUNW \\
\hline 0508 & XMTIC & MTIC fraud related exports, CVM & EM, CVM & *0508 \\
\hline 0509 & XMTICE & MTIC fraud related exports, cash & EM & *0509 \\
\hline 0501 & XNO & Exports of Non-Oil goods & EM, CVM & BQAN \\
\hline 0502 & XNOX & Exports of Non-Oil goods ex. MTIC & EM, CVM & *0502 \\
\hline 0803 & XOIL & Exports of Oil, CVM & EM, CVM & BOXX \\
\hline 0503 & XS & Exports of Services, CVM & EM, CVM & IKBE \\
\hline
\end{tabular}

\section*{Reference Sources}
No. Name Source

1003 CCLACA
1225 CGACADJ
1250 CGACRES

1033 CGISC
1107 CIPD
1075 CT
943 DICGPC
1108 DIPD
1020 DIRCG
1021 DIRLA
401 EPS
404 ET
1618 FYCPR

LNSU+MDUR+CJRY
ANRT+ANRU+ANRV
ANRT-(RUSD+ACJY+(CYNX+RUTC+DKHE+DBKE)+(LNFP+CULD)-
BKTC+(DKHH+ZYBE))
GCSG+GCSH+RUDY
HBOK-(CGGT-HCAT)-HCEH-HHCC
ACCD-MDXH+JPPT
GVHH-CPBA-GVHG
HBOL-HCEH-(CGGT-HCAT)
GVHA+GVHC+GVHE-ZYHY-ZYIA
NUHC+GVHD+GVHF-ZYHZ
DYDC(Q)-LOJU(Q)-CGZH(Q)/I000-CULX(Q)-CUAN(Q)
DYDC(Q)-LOJU(Q)
CAGD+CAED+RITQ

315 GGIDEF
2031 GGLIQ
1125 HHTA
1124 HHTFA
1038 INCTAC
1209 KCGPC
1519 KGHH
1070 MILAPME
606 MMTIC
608 MMTICE
1051 NHNPTC
1064 NNDACC
1015 NNSCTP
2019 OCGBRF
1241 OFLPS
1019 OHT
703 PCE
710 PIF
718 PMNOS
719 PMNOSX
806 PMOIL
1235 PSACADJ
714 PXNO
804 PXOIL
717 PXS
1040 RNCG
1101 SAS
1102 SL
2003 SLAB
2005 SLAPO
946 SLCGLA
2008 SLCGPR
801 TDOIL
973 TME
922 TROD

100*(RNCZ+RNSM)/DLWF
BKQJ-BKSQ+BKSP-AIPD
CGDS-FLVY-FHLS-FLVE
CGDO-NHRX-FLYE
CYNX+RUTC+DKHE+DBKE
-ANND-NMGR-NMGT
RPVO+RPVP-RPVS-RVPT
DCHG+DCHF+GCJJ
IKBL-IKBF-(BQHS*I000)
IKBI-IKBC-(BQHQ*I000)
CFGW-MDYW-MDYU
CUKY+CQOQ+CQTC-CEIP-LNFO
ACCD-ACCN-DBBD-DKGZ
-AACH-AACI-ANTC NKIF+NPVQ-NIJI-ACUR

NSNP+NSFA+CQTC
100*(ABJQ+HAYE)/NPSP
100*(NPQS/NPQT)
100*(IKBI-ENXO)/JTEA
((IKBI-ENXO)- (IKBI-IKBC-BQHQ*I000))/(JTEA-(IKBL-IKBF-BQHS*I000))
100*(ENXO/BPIX)
ANSW+ANSX+ANSY
100*(BOKG-ELBL)/BQAN
100*(ELBL/BOXX)
100*(IKBB/IKBE)
NMCK-ACEC-BKTK
HBQA-HCFQ-NLDA-HFBB-LTEB
HBQB-HFBB-HCFQ-NLDA
ADKA-ADKE-ADKF+ADHA-ADHC
ADNJ+APEN+RDLA
ADHC+ADKF+ADKE
RCPH+RDZU+READ+RMAT
UJAD+BPIX-BOXX
ANLT+ANNZ-ANNW
FJUO-FJCK-HCSO-HCSM```

